This paper the chilled water and involves the investigations of ice cold thermal storage technologies along with the associated operating strategies for the air conditioning (AC) systems of the typical office buildi...This paper the chilled water and involves the investigations of ice cold thermal storage technologies along with the associated operating strategies for the air conditioning (AC) systems of the typical office buildings in Saudi Arabia, so as to reduce the electricity energy consumption during the peak load periods. In Saudi Arabia, the extensive use of AC for indoor cooling in offices composes a large proportion of the annual peak electricity demand. The very high temperatures over long summer periods, extending tYom May to October, and the low cost of energy are the key factors in the wide and extensive use of air conditioners in the kingdom. This intense cooling load adds up to the requirement increase in the capacity of power plants, which makes them under utilized during the oil:peak periods. Thermal energy storage techniques are one of the effective demand-side energy management methods. Systems with cold storage shifts all or part of the electricity requirement from peak hours to off-peak hours to reduce demand charges and/or take advantage of off-peak rates. The investigations reveal that the cold thermal energy storage techniques are effective from both technical and economic perspectives in the reduction of energy consumption in the buildings during peak periods.展开更多
This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel genera...This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel generators to reduce the electricity bills for customers is carried out by using the hybrid optimization model for electric renewable(HOMER)software. The size of the standby diesel generator and its operational duration are determined based on the lowest cost of electricity obtained from the evaluations. The economic assessments demonstrate that there is potential to reduce the electricity bills for commercial and industrial customers under the existing fuel price and tariffs. The commercial customers under the tariff C2 have the highest potential to save their electricity bills with the use of standby diesel generators for peak reduction. This study demonstrates the potential of the standby diesel generators in peak reduction.展开更多
At present,a life-cycle assessment of energy storage systems(ESSs)is not widely available in the literature.Such an assessment is increasingly vital nowadays as ESS is recognized as one of the important equipment in p...At present,a life-cycle assessment of energy storage systems(ESSs)is not widely available in the literature.Such an assessment is increasingly vital nowadays as ESS is recognized as one of the important equipment in power systems to reduce peak demands for deferring or avoiding augmentation in the network and power generation.As the battery cost is still very high at present,a comprehensive assessment is necessary to determine the optimum ESS capacity so that the maximum financial gain is achievable at the end of the batteries’lifespan.Therefore,an effective life-cycle assessment is proposed in this paper to show how the optimum ESS capacity can be determined such that the maximum net financial gain is achievable at the end of the batteries’lifespan when ESS is used to perform peak demand reductions for the customer or utility companies.The findings reveal the positive financial viability of ESS on the power grid,otherwise the projection of the financial viability is often seemingly poor due to the high battery cost with a short battery lifespan.An improved battery degradation model is used in this assessment,which can simulate the battery degradation accurately in a situation whereby the charging current,discharging current,and temperature of the batteries are intermittent on a site during peak demand reductions.This assessment is crucial to determine the maximum financial benefits brought by ESS.展开更多
A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a...A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control.展开更多
This paper proposes a hybrid control strategy of air-conditioning loads(ACLs)for participating in peak load reduction.The hybrid control strategy combines the temperature setpoint adjustment(TSA)control and on/off con...This paper proposes a hybrid control strategy of air-conditioning loads(ACLs)for participating in peak load reduction.The hybrid control strategy combines the temperature setpoint adjustment(TSA)control and on/off control together to make full use of response potentials of ACLs.The primary free transport model of ACLs has been established in literature at or near a fixed temperature setpoint.In this paper,a wide-range transport(WRT)model suitable for larger value of TSA is proposed.The WRT model can be constructed easily through the parameter of devices and indoor and outdoor temperature.To modulate the aggregate response characteristics of ACLs more friendly to the power grid,the safe protocol(SP)is adopted and integrated into the WRT model,which achieves a good unification of oscillation suppression and efficient modeling.Moreover,the hybrid control strategy is implemented based on the WRT model,and the model predictive control(MPC)controller is designed considering the tracking error and control switch cost.At last,the superiority of the hybrid control strategy is verified and the performance of ACLs for peak load reduction under this controller is simulated.The simulation results show that the hybrid control strategy could exploit the load reduction potential of ACLs fully than the TSA mode and track the reference signal more accurately.展开更多
Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribu...Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS.展开更多
The purpose of this study is to investigate the control function and mechanisms of natural river notches. Physical and numerical experiments are analyzed in this study for two representative types of sediment events:...The purpose of this study is to investigate the control function and mechanisms of natural river notches. Physical and numerical experiments are analyzed in this study for two representative types of sediment events: high intensity and short duration Type A sediment disaster events, and low intensity and long duration Type B moderate non-disaster events. Two dimensionless parameters, sediment trapping rate and reduction rate of peak sediment transport, are defined to evaluate the sediment control function of river notches. Study results indicate that the contraction ratio of the notch has a significant influence on sediment control function, with high contraction ratios resulting in both high sediment-trapping and high reduction rates. River notches provide better sediment control during Type A events than Type B events. The sediment control mechanism of river notches is the result of multiple interactions among river flow, sediment transport, and riverbed variation. Analysis of these interactions supports the significant protection role of river notches on sediment control for disaster events.展开更多
-Air-conditioning (AC) systems are the major energy consumption units in residential and commercial buildings. In the context of smart grid, optimizing AC operations leads to substantial saving in energy consumption...-Air-conditioning (AC) systems are the major energy consumption units in residential and commercial buildings. In the context of smart grid, optimizing AC operations leads to substantial saving in energy consumption, reducing the consumer's bill and contributing to the environment by minimizing carbon emissions from generating stations. This paper presents a distributed AC energy management system for buildings by using networked master-slaves controller architecture. The proposed system was designed, simulated, and experimentally tested by using real AC units in a students' residence hall. Based on the students' class schedules, several operational scenarios were implemented and tested. The proposed system implementation leads to a 40% to 60% saving of the consumed energy by the tested units. The same energy management scheme can be applied and implemented in other commercial and residential buildings.展开更多
文摘This paper the chilled water and involves the investigations of ice cold thermal storage technologies along with the associated operating strategies for the air conditioning (AC) systems of the typical office buildings in Saudi Arabia, so as to reduce the electricity energy consumption during the peak load periods. In Saudi Arabia, the extensive use of AC for indoor cooling in offices composes a large proportion of the annual peak electricity demand. The very high temperatures over long summer periods, extending tYom May to October, and the low cost of energy are the key factors in the wide and extensive use of air conditioners in the kingdom. This intense cooling load adds up to the requirement increase in the capacity of power plants, which makes them under utilized during the oil:peak periods. Thermal energy storage techniques are one of the effective demand-side energy management methods. Systems with cold storage shifts all or part of the electricity requirement from peak hours to off-peak hours to reduce demand charges and/or take advantage of off-peak rates. The investigations reveal that the cold thermal energy storage techniques are effective from both technical and economic perspectives in the reduction of energy consumption in the buildings during peak periods.
文摘This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel generators to reduce the electricity bills for customers is carried out by using the hybrid optimization model for electric renewable(HOMER)software. The size of the standby diesel generator and its operational duration are determined based on the lowest cost of electricity obtained from the evaluations. The economic assessments demonstrate that there is potential to reduce the electricity bills for commercial and industrial customers under the existing fuel price and tariffs. The commercial customers under the tariff C2 have the highest potential to save their electricity bills with the use of standby diesel generators for peak reduction. This study demonstrates the potential of the standby diesel generators in peak reduction.
文摘At present,a life-cycle assessment of energy storage systems(ESSs)is not widely available in the literature.Such an assessment is increasingly vital nowadays as ESS is recognized as one of the important equipment in power systems to reduce peak demands for deferring or avoiding augmentation in the network and power generation.As the battery cost is still very high at present,a comprehensive assessment is necessary to determine the optimum ESS capacity so that the maximum financial gain is achievable at the end of the batteries’lifespan.Therefore,an effective life-cycle assessment is proposed in this paper to show how the optimum ESS capacity can be determined such that the maximum net financial gain is achievable at the end of the batteries’lifespan when ESS is used to perform peak demand reductions for the customer or utility companies.The findings reveal the positive financial viability of ESS on the power grid,otherwise the projection of the financial viability is often seemingly poor due to the high battery cost with a short battery lifespan.An improved battery degradation model is used in this assessment,which can simulate the battery degradation accurately in a situation whereby the charging current,discharging current,and temperature of the batteries are intermittent on a site during peak demand reductions.This assessment is crucial to determine the maximum financial benefits brought by ESS.
文摘A problem of peak power in DC-electrified railway systems is mainly caused by train power demand during acceleration.If this power is reduced,substation peak power will be significantly decreased.This paper presents a study on optimal energy saving in DC-electrified railway with on-board energy storage system(OBESS) by using peak demand cutting strategy under different trip time controls.The proposed strategy uses OBESS to store recovered braking energy and find an appropriated time to deliver the stored energy back to the power network in such a way that peak power of every substations is reduced.Bangkok Mass Transit System(BTS)-Silom Line in Thailand is used to test and verify the proposed strategy.The results show that substation peak power is reduced by63.49% and net energy consumption is reduced by 15.56%using coasting and deceleration trip time control.
基金supported by National Key R&D Program of China(No.2018YFE0122200)the Fundamental Research Funds for the Central Universities(No.2020MS095).
文摘This paper proposes a hybrid control strategy of air-conditioning loads(ACLs)for participating in peak load reduction.The hybrid control strategy combines the temperature setpoint adjustment(TSA)control and on/off control together to make full use of response potentials of ACLs.The primary free transport model of ACLs has been established in literature at or near a fixed temperature setpoint.In this paper,a wide-range transport(WRT)model suitable for larger value of TSA is proposed.The WRT model can be constructed easily through the parameter of devices and indoor and outdoor temperature.To modulate the aggregate response characteristics of ACLs more friendly to the power grid,the safe protocol(SP)is adopted and integrated into the WRT model,which achieves a good unification of oscillation suppression and efficient modeling.Moreover,the hybrid control strategy is implemented based on the WRT model,and the model predictive control(MPC)controller is designed considering the tracking error and control switch cost.At last,the superiority of the hybrid control strategy is verified and the performance of ACLs for peak load reduction under this controller is simulated.The simulation results show that the hybrid control strategy could exploit the load reduction potential of ACLs fully than the TSA mode and track the reference signal more accurately.
文摘Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS.
基金financial support were provided by the Disaster Prevention Research Center, National Cheng Kung University
文摘The purpose of this study is to investigate the control function and mechanisms of natural river notches. Physical and numerical experiments are analyzed in this study for two representative types of sediment events: high intensity and short duration Type A sediment disaster events, and low intensity and long duration Type B moderate non-disaster events. Two dimensionless parameters, sediment trapping rate and reduction rate of peak sediment transport, are defined to evaluate the sediment control function of river notches. Study results indicate that the contraction ratio of the notch has a significant influence on sediment control function, with high contraction ratios resulting in both high sediment-trapping and high reduction rates. River notches provide better sediment control during Type A events than Type B events. The sediment control mechanism of river notches is the result of multiple interactions among river flow, sediment transport, and riverbed variation. Analysis of these interactions supports the significant protection role of river notches on sediment control for disaster events.
基金supported by the Office of the Vice Chancellor for Students’ Affair-Residential Dormitories Department, American University of Sharjah, UAE
文摘-Air-conditioning (AC) systems are the major energy consumption units in residential and commercial buildings. In the context of smart grid, optimizing AC operations leads to substantial saving in energy consumption, reducing the consumer's bill and contributing to the environment by minimizing carbon emissions from generating stations. This paper presents a distributed AC energy management system for buildings by using networked master-slaves controller architecture. The proposed system was designed, simulated, and experimentally tested by using real AC units in a students' residence hall. Based on the students' class schedules, several operational scenarios were implemented and tested. The proposed system implementation leads to a 40% to 60% saving of the consumed energy by the tested units. The same energy management scheme can be applied and implemented in other commercial and residential buildings.