The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on wh...The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on which the mechanism of the solid-state reduction was investigated. The results showed that using coal as reductant at 950-1100 °C, the solid-state reduction of the pre-oxidized vanadium-titanium magnetite concentrate was controlled by interface chemical reaction and the apparent activation energy was 67.719 k J/mol. The mineral phase transformation during the reduction process can be described as follows: pre-oxidized vanadium-titanium magnetite concentrate → ulvospinel → ilmenite → Fe Ti2O5 →(FenTi1-n)Ti2O5. M3O5-type(M can be Fe, Ti, Mg, Mn, etc) solid solutions would be formed during the reduction process of the pre-oxidized vanadium-titanium magnetite concentrate at 1050 °C for 60 min. The poor reducibility of iron in M3O5 solid solutions is the main reason to limit the reduction property of pre-oxidized vanadium-titanium magnetite concentrate.展开更多
The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases ...The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases rapidly with increasing the content of NiO, and the presence of NiO also improves the reduction rate of iron oxides. It is found that NiO is preferentially reduced at the beginning of the reactions, and then the metallic Ni acts as a catalyst promoting the reduction rate of iron oxides. It is also observed that the increase of the Ni O content enhances the formation of awaruite(FeNi3) but decreases the percentage of kamacite(Fe,Ni) and taenite(Fe,Ni). The particle size of the materials tends to be uniform during the reduction process due to the presence of metallic nickel, metallic iron and the formation of Fe-Ni alloy. The concentration of CO in the product gas is greater than that of CO2 at the beginning of the reaction and then slows down. The fastest reduction rate of Fe2O3-NiO composites with CO appears at 400-500 °C, and nucleation growth model can be used to elucidate the reduction mechanism. Nucleation growth process is found to be the rate controlling step when the temperature is lower than 1000 °C.展开更多
Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program redu...Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.展开更多
The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of...The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of powder decreases from 107. 5μm to 2. 0 μm, the surface area of the powder and the contact area between the powder and gas increase, which makes the reduction process of hematite accelerate by about 8 times, and the apparent activation energy of the reduction reaction drops to 36.9 kJ/mol from 78. 3 kJ/mol because the activity of ore powder is improved by refining gradually. With the same reaction rate, the reaction temperature of 6.5 μm powder decreases by about 80 ℃ compared with that of 107. 5 μm powder. Thinner diffusion layer can also accelerate the reaction owing to powder refining. The higher the temperature, the greater is the peak of the reduction rate; at the same temperature, the greater the particle size, the smaller is the peak value of the reduction rate; both inner diffusion and interface chemical reaction play an important role in the whole reaction process.展开更多
The reduction kinetics of zinc calcine under a CO atmosphere was evaluated by isothermal reductive roasting in a temperature range of 600-800℃.The extent of reaction of zinc calcine was measured using thermogravimetr...The reduction kinetics of zinc calcine under a CO atmosphere was evaluated by isothermal reductive roasting in a temperature range of 600-800℃.The extent of reaction of zinc calcine was measured using thermogravimetry(TG),and the decomposition mechanism of zinc ferrite in zinc calcine was analyzed based on variations in the soluble zinc and ferrous contents.The results indicate that the reaction was controlled by the nucleation of the products,with an apparent activation energy of 65.28 k J/mol.The partial pressure of CO affected the reaction rate more strongly than the CO intensity(defined as PCO/(PCO+PCO2)).The generation rate of zinc oxide was higher than that of ferrous oxide;therefore,the nucleation of ferrous oxide is the rate-determining step of the reaction.展开更多
The effect of magnesia on calcium ferrite(CaO.Fe2O3)reduction by CO was examined by isothermal thermogravimetry.Samples of calcium ferrite added with 0,2,4,and 8 wt.%magnesia(abbreviated as CF,CF2M,CF4M,and CF8M)were ...The effect of magnesia on calcium ferrite(CaO.Fe2O3)reduction by CO was examined by isothermal thermogravimetry.Samples of calcium ferrite added with 0,2,4,and 8 wt.%magnesia(abbreviated as CF,CF2M,CF4M,and CF8M)were prepared.Phase composition was analyzed by X-ray diffraction,and the results indicated that CF2M and CF4M are reduced to lower reduction degree and with lower apparent activation energy than CF;and CF8M with more MgO.Fe2O3 is reduced to a lower degree and with more difficulty compared with CF.Reduction rate analysis revealed that CF,CF2M,CF4M,and CF8M reductions are all typical two-step reactions with the order of CF→CWF(CaO.FeO.Fe2O3)→Fe.The apparent reduction activation energies of CF,CF2M,CF4M,and CF8M are 46.89,37.30,17.30,and 29.20 kJ/mol,respectively.Sharp analysis depicted that CF2M,CF4M,and CF8M reductions are all described by 2D Avrami–Erofeev(A–E)equation(A2)in the whole process,while CF reduction is first expressed by A2 and then by 3D A–E equation(A3).Different from shrinking core model,a new kinetic model for powdery samples reduction was proposed to illustrate the relationship among reduction rates,reduction routes,and model functions.展开更多
Reduction kinetics of fine iron ore powder in different gas mixtures were investigated in high-temperature fluidized bed at a scale of kilograms. Influence of processing parameters, such as particle size, gas flow vel...Reduction kinetics of fine iron ore powder in different gas mixtures were investigated in high-temperature fluidized bed at a scale of kilograms. Influence of processing parameters, such as particle size, gas flow velocity, height of charge, temperature, compositions of gas mixture, and percentage of inert components, on reduction ki- netics was experimentally determined under the condition of fluidization. The equations for calculating instantaneous and average oxidation rates were deduced. It was found that an increasing H2 O percentage in the gas mixture could obviously decrease the reduction rate because the equilibrium partial pressure of H2 decreased with increasing content of Hz O in the gas mixture and then the driving force of reduction reaction was reduced. When the H2 content was high, .the apparent reaction rate was so rapid when the average size of iron ore fines was less than 1 mm that the re- action temperature can be as low as 750 ℃ ; when the average size of iron ore fines was more than 1 mm, a high re- action temperature of 800 ℃ was required. In addition, it was also found that the content of H2O should be less than 10% for efficient reduction.展开更多
Experiments were carried out by adding CaF2 and NaF as catalysts in an Ar atmosphere to study the isothermal reduction kinetics of vanadium titano-magnetite carbon composite pellets under high temperature in the range...Experiments were carried out by adding CaF2 and NaF as catalysts in an Ar atmosphere to study the isothermal reduction kinetics of vanadium titano-magnetite carbon composite pellets under high temperature in the range from 1 473 to 1 673 K. The scanning electron microscope (SEM) was used to characterize the microstructure of product. By analyzing reduction mechanism, it was found that the rate controlling step was gas diffusion, and the activation energy was 178.39 kJ/mol without adding any catalysts. Adding CaF2 or NaF of 3% to vanadium titano-magnetite carbon composite pellets can decrease the apparent activation energy of reduction, and the decrease extent was 14.95 and 15.79 kJ/mol, respectively. In addition, temperature was an important factor influencing on reaction rate.展开更多
Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at dif...Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22–99.69 k J/mol. Phase transformations in CVTS reduction are as follows: Fe_2O_3→Fe_3O_4→FeO→Fe; Fe_2TiO_5→Fe_2TiO_4→FeTiO_3; FeO·V_2O_3→V_2O_3; FeO·Cr_2O_3→Cr_2O_3.展开更多
Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsi...Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.展开更多
Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction(XR...Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction(XRD), and quadrupole mass spectrometry. The kinetics parameters of the reduction stages were obtained by isoconversional(model-free) methods. Three stages in the reduction are Fe2O3→Fe3O4, Fe3O4→Fe O, and Fe O→Fe, which start at 912 K, 1255 K, and 1397 K, respectively. The CO content in the evolved gas is lower than the CO2content in the Fe2O3→Fe3O4stage but is substantially greater than the CO2 contents in the Fe3O4→Fe O and Fe O→Fe stages, where gasification starts at approximately 1205 K. The activation energy(E) of the three stages are 126–309 k J/mol, 628 k J/mol, and 648 k J/mol, respectively. The restrictive step of the total reduction is Fe O→Fe. If the rate of the total reduction is to be improved, the rate of the Fe O→Fe reduction should be improved first. The activation energy of the first stage is much lower than those of the latter two stages because of carbon gasification. Carbon gasification and FexOy reduction by CO, which are the restrictive step in the last two stages, require further study.展开更多
Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas,in which oxygen transfer is achieved by a redox material.Although lots of efforts have been made to develop high-per...Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas,in which oxygen transfer is achieved by a redox material.Although lots of efforts have been made to develop high-performance redox materials,a few studies have focused on the redox kinetics.In this work,the kinetics of SrFeO_(3−δ)–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor.During the methane reduction,combustion occurs before the partial oxidation and there exists a transition between them.The weight loss due to combustion increases,but the transition region becomes less inconspicuous as the reduction temperature increased.The weight loss associated with the partial oxidation is much larger than that with combustion.The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n=3(A3 model)with an activation energy of 59.8 kJ∙mol^(‒1).The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law.The partial oxidation is half order with respect to methane pressure.The proposed rate law could well predict the reduction kinetics;thus,it may be used to design and/or analyze a chemical looping reforming reactor.展开更多
The rate of reducing Fet O in CaO-SiO2-Al2O3-Fet O slags with carbon saturated in molten iron has been determined in a graphite crucible in the temperature range of 1673-1773K. The effects of temperature, slag basicit...The rate of reducing Fet O in CaO-SiO2-Al2O3-Fet O slags with carbon saturated in molten iron has been determined in a graphite crucible in the temperature range of 1673-1773K. The effects of temperature, slag basicity and FetO content on the reduction rate have also been discussed. Test results show that the reduction rate increases with increasing temperature or FEtO concentration in slags, and the reduction rate has a parabolic relation with the simple basicity or optical basicity of slag, the maximum reduction rate being observed at around CaO/SiO2=1.5 of molten slags. The reduction reaction order is 1. 73 or 1.80, and the reduction activation energy is 299.9 or 295.9 kJ/mol in regard to Fet O weight content or Fet O activity calculated by using regular solution model, respectively. The reduction rate of CaO-SiO2-Al2 O3-Fet O slags with carbon saturated in molten iron is in the range of 0.32-3.48 mol-O/cm2·s.展开更多
Metallic magnesium was prepared by vacuumassisted carbothermic reduction method, and its morphologies were observed and analyzed. The reduction ratios of reactions were carried out under various vacuums, reaction temp...Metallic magnesium was prepared by vacuumassisted carbothermic reduction method, and its morphologies were observed and analyzed. The reduction ratios of reactions were carried out under various vacuums, reaction temperatures, and time. Reaction kinetics of carbothermic reduction process was investigated. The results reveal that the morphologies of metallic magnesium sample that crystallized in the bottom and top sections of the condensation cap appear as the shape of feather with close-packing needle structure and the shape of schistose with metal luster,compactly clumpy structure, respectively. The reduction ratio of reaction process can be facilitated through reducing vacuum, increasing temperature, lengthening time, or their combinations and can reach up to 83.7 % under the condition of 10 Pa and 1573 K with 60 min reaction time. At1423-1573 K, the reaction rate constant k of carbothermic reduction of magnesia in vacuum gets greater with the increase of temperature. The reaction activity energy is190.28, 219.71 and 451.12-528.54 k J mol-1when the procedure of carbon gasification reaction, interfacial reaction, or gaseous diffusion is the reaction rate-determining step at 1423-1573 K, respectively. The gaseous diffusion procedure has the largest activity energy value and is,therefore, the main reaction rate-determining step.展开更多
Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and ...Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion.展开更多
Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen.Results show that wustite in both states can be reduced entirely at all temperatures.The thermal and ki...Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen.Results show that wustite in both states can be reduced entirely at all temperatures.The thermal and kinetic conditions for the hydrogen reduction of molten phases are better than those when the reactants and products are in the solid state,with a higher reaction rate.The hydrogen reduction of different wustite phases fits the Mampel Power model(power exponent n=1/2)well,and this model is independent of the phase state.The average apparent activation energies of the reduction process calculated by the iso-conversional method are 5.85 kJ·mol^(−1) and 104.74 kJ·mol^(−1),when both reactants and products are in the solid state and the molten state,respectively.These values generally agree with those calculated by the model fitting method.展开更多
The reduction kinetics of hematite in the presence of coke as a reductant was studied via isothermal and non-isothermal thermodynamic analyses. The isothermal reduction of hematite was conducted at a pre-determined te...The reduction kinetics of hematite in the presence of coke as a reductant was studied via isothermal and non-isothermal thermodynamic analyses. The isothermal reduction of hematite was conducted at a pre-determined temperature ranging from 1423 to 1573 K. The results indicated that a higher reduction temperature led to an increased reduction degree and an increased reduction rate. The non-isothermal reduction of hematite was carried out from room temperature to 1573 K at various heating rates from 5 to 15 K·min^(-1). A greater heating rate gave a greater reduction rate but decreased reduction degree. With an increase in temperature, both the reduction rate and the reduction degree increased at a smaller rate when the temperature was less than 1150 K, and they increased at a higher rate when the temperature was greater than 1150 K before completion of the reduction reaction. Both the isothermal and the non-isothermal reduction behaviors of hematite were described by the Avrami–Erofeev model. For the isothermal reduction, the apparent activation energy and pre-exponential factor were 171.25 kJ ·mol^(-1) and 1.80 × 10~5 min^(-1), respectively. In the case of non-isothermal reduction, however, the apparent activation energy and pre-exponential factor were correlated with the heating rate.展开更多
As an important powder material for scandate cathode,Sc_(2) O_(3)-doped WO_(3) powder together with hollow spherical WO_(3) for comparison was prepared by spraydrying method.The reduction behavior and kinetics of pure...As an important powder material for scandate cathode,Sc_(2) O_(3)-doped WO_(3) powder together with hollow spherical WO_(3) for comparison was prepared by spraydrying method.The reduction behavior and kinetics of pure WO_(3) and Sc_(2) O_(3)-doped WO_(3) were studied by temperatureprogrammed reduction(TPR) method.It is found that scandia doping can decrease the reduction activation energy of WO_(3) and thus lower the reduction temperature and increase the reduction rate.Based on the kinetics results,the reduction techniques are presented.The obtained powder has a narrow size distribution in the range of 0.6-0.8 μm.展开更多
Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2~CO mixtures with different HJCO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1...Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2~CO mixtures with different HJCO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1223, 1323, and 1423 K) in a daermogravimetric analysis appaxatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstxucture of re- duced pellets was observed by scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hin- der effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could main- tain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overaJl equilibrium constant to the promotion effect depends on the gas composition.展开更多
The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).Th...The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.展开更多
基金Project(NCET-10-0834)supported by the Program for New Century Excellent Talents in University,China
文摘The solid-state reduction kinetics of pre-oxidized vanadium-titanium magnetite concentrate was studied. The phase and microstructure of the reduction product were characterized by XRD, SEM and EDS methods, based on which the mechanism of the solid-state reduction was investigated. The results showed that using coal as reductant at 950-1100 °C, the solid-state reduction of the pre-oxidized vanadium-titanium magnetite concentrate was controlled by interface chemical reaction and the apparent activation energy was 67.719 k J/mol. The mineral phase transformation during the reduction process can be described as follows: pre-oxidized vanadium-titanium magnetite concentrate → ulvospinel → ilmenite → Fe Ti2O5 →(FenTi1-n)Ti2O5. M3O5-type(M can be Fe, Ti, Mg, Mn, etc) solid solutions would be formed during the reduction process of the pre-oxidized vanadium-titanium magnetite concentrate at 1050 °C for 60 min. The poor reducibility of iron in M3O5 solid solutions is the main reason to limit the reduction property of pre-oxidized vanadium-titanium magnetite concentrate.
基金Projects(51304091,U1302274)supported by the National Natural Science Foundation of ChinaProjects(2013FD009,2013FZ007)supported by Applied Basic Research Program of Yunnan Province,ChinaProject(2012HB009)supported by the Candidate Talents Training Fund of Yunnan Province,China
文摘The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases rapidly with increasing the content of NiO, and the presence of NiO also improves the reduction rate of iron oxides. It is found that NiO is preferentially reduced at the beginning of the reactions, and then the metallic Ni acts as a catalyst promoting the reduction rate of iron oxides. It is also observed that the increase of the Ni O content enhances the formation of awaruite(FeNi3) but decreases the percentage of kamacite(Fe,Ni) and taenite(Fe,Ni). The particle size of the materials tends to be uniform during the reduction process due to the presence of metallic nickel, metallic iron and the formation of Fe-Ni alloy. The concentration of CO in the product gas is greater than that of CO2 at the beginning of the reaction and then slows down. The fastest reduction rate of Fe2O3-NiO composites with CO appears at 400-500 °C, and nucleation growth model can be used to elucidate the reduction mechanism. Nucleation growth process is found to be the rate controlling step when the temperature is lower than 1000 °C.
基金financially supported by the National Natural Science Foundation of China (Nos. 51104014 and 51134008)
文摘Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
基金Sponsored by National Natural Science Foundation of China(50474006)National Science and Technology Support Program for the 11th Five-Year Plan(2006BAE03A12,2006BAE03A05)
文摘The reduction kinetics and mechanisms of hematite ore with various particle sizes with hydrogen at low temperature were studied using the thermogravimetric analysis. At the same temperature, after the particle size of powder decreases from 107. 5μm to 2. 0 μm, the surface area of the powder and the contact area between the powder and gas increase, which makes the reduction process of hematite accelerate by about 8 times, and the apparent activation energy of the reduction reaction drops to 36.9 kJ/mol from 78. 3 kJ/mol because the activity of ore powder is improved by refining gradually. With the same reaction rate, the reaction temperature of 6.5 μm powder decreases by about 80 ℃ compared with that of 107. 5 μm powder. Thinner diffusion layer can also accelerate the reaction owing to powder refining. The higher the temperature, the greater is the peak of the reduction rate; at the same temperature, the greater the particle size, the smaller is the peak value of the reduction rate; both inner diffusion and interface chemical reaction play an important role in the whole reaction process.
基金Projects(2018YFC19033012018YFC1900301)supported by the National Key Research and Development Program of ChinaProject(51825403)supported by the National Natural Science Foundation for Distinguished Young Scholars of China。
文摘The reduction kinetics of zinc calcine under a CO atmosphere was evaluated by isothermal reductive roasting in a temperature range of 600-800℃.The extent of reaction of zinc calcine was measured using thermogravimetry(TG),and the decomposition mechanism of zinc ferrite in zinc calcine was analyzed based on variations in the soluble zinc and ferrous contents.The results indicate that the reaction was controlled by the nucleation of the products,with an apparent activation energy of 65.28 k J/mol.The partial pressure of CO affected the reaction rate more strongly than the CO intensity(defined as PCO/(PCO+PCO2)).The generation rate of zinc oxide was higher than that of ferrous oxide;therefore,the nucleation of ferrous oxide is the rate-determining step of the reaction.
基金the financial support of the National Natural Science Foundation of China(51234010 and 51522403)the Program for New Century Excellent Talents in University and the Program for the Youth Top-Notch Talents of Chongqing(20151001)Ultrasonic Assisted Iron Ore Sintering Technology Research(cstc2014kjrc-qnrc90001),and China Scholarship Council.
文摘The effect of magnesia on calcium ferrite(CaO.Fe2O3)reduction by CO was examined by isothermal thermogravimetry.Samples of calcium ferrite added with 0,2,4,and 8 wt.%magnesia(abbreviated as CF,CF2M,CF4M,and CF8M)were prepared.Phase composition was analyzed by X-ray diffraction,and the results indicated that CF2M and CF4M are reduced to lower reduction degree and with lower apparent activation energy than CF;and CF8M with more MgO.Fe2O3 is reduced to a lower degree and with more difficulty compared with CF.Reduction rate analysis revealed that CF,CF2M,CF4M,and CF8M reductions are all typical two-step reactions with the order of CF→CWF(CaO.FeO.Fe2O3)→Fe.The apparent reduction activation energies of CF,CF2M,CF4M,and CF8M are 46.89,37.30,17.30,and 29.20 kJ/mol,respectively.Sharp analysis depicted that CF2M,CF4M,and CF8M reductions are all described by 2D Avrami–Erofeev(A–E)equation(A2)in the whole process,while CF reduction is first expressed by A2 and then by 3D A–E equation(A3).Different from shrinking core model,a new kinetic model for powdery samples reduction was proposed to illustrate the relationship among reduction rates,reduction routes,and model functions.
基金Item Sponsored by National Environmental Protection Public Welfare Profession Scientific Special Plan of China(201209023)
文摘Reduction kinetics of fine iron ore powder in different gas mixtures were investigated in high-temperature fluidized bed at a scale of kilograms. Influence of processing parameters, such as particle size, gas flow velocity, height of charge, temperature, compositions of gas mixture, and percentage of inert components, on reduction ki- netics was experimentally determined under the condition of fluidization. The equations for calculating instantaneous and average oxidation rates were deduced. It was found that an increasing H2 O percentage in the gas mixture could obviously decrease the reduction rate because the equilibrium partial pressure of H2 decreased with increasing content of Hz O in the gas mixture and then the driving force of reduction reaction was reduced. When the H2 content was high, .the apparent reaction rate was so rapid when the average size of iron ore fines was less than 1 mm that the re- action temperature can be as low as 750 ℃ ; when the average size of iron ore fines was more than 1 mm, a high re- action temperature of 800 ℃ was required. In addition, it was also found that the content of H2O should be less than 10% for efficient reduction.
基金Item Sponsored by National Key Technology Research and Development Program of China(2008BAB32B05)
文摘Experiments were carried out by adding CaF2 and NaF as catalysts in an Ar atmosphere to study the isothermal reduction kinetics of vanadium titano-magnetite carbon composite pellets under high temperature in the range from 1 473 to 1 673 K. The scanning electron microscope (SEM) was used to characterize the microstructure of product. By analyzing reduction mechanism, it was found that the rate controlling step was gas diffusion, and the activation energy was 178.39 kJ/mol without adding any catalysts. Adding CaF2 or NaF of 3% to vanadium titano-magnetite carbon composite pellets can decrease the apparent activation energy of reduction, and the decrease extent was 14.95 and 15.79 kJ/mol, respectively. In addition, temperature was an important factor influencing on reaction rate.
基金financially supported by the National Natural Science Foundation of China(Nos.51604065 and 51674084)the Fundamental Funds for the Central Universities(Nos.150203003 and 150202001)+2 种基金the Natural Science Foundation of Liaoning Province(20170540316)the China Postdoctoral Science Foundation(2017M611246)the NEU Postdoctoral Science Foundation(No.20160304)
文摘Reduction of chromium-bearing vanadium–titanium sinter(CVTS) was studied under simulated conditions of a blast furnace, and thermodynamics and kinetics were theoretically analyzed. Reduction kinetics of CVTS at different temperatures was evaluated using a shrinking unreacted core model. The microstructure, mineral phase, and variation of the sinter during reduction were observed by X-ray diffraction, scanning electron microscopy, and metallographic microscopy. Results indicate that porosity of CVTS increased with temperature. Meanwhile, the reduction degree of the sinter improved with the reduction rate. Reduction of the sinter was controlled by a chemical reaction at the initial stage and inner diffusion at the final stage. Activation energies measured 29.22–99.69 k J/mol. Phase transformations in CVTS reduction are as follows: Fe_2O_3→Fe_3O_4→FeO→Fe; Fe_2TiO_5→Fe_2TiO_4→FeTiO_3; FeO·V_2O_3→V_2O_3; FeO·Cr_2O_3→Cr_2O_3.
基金Supported by the National Natural Science Foundation of China (20736004)the State Key Development Program for Basic Research of China (2007CB613502)
文摘Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.
基金financially supported by the State Key Program of National Natural Science of China(No.51234008)
文摘Staged reduction kinetics and characteristics of iron oxide direct reduction by carbon were studied in this work. The characteristics were investigated by simultaneous thermogravimetric analysis, X-ray diffraction(XRD), and quadrupole mass spectrometry. The kinetics parameters of the reduction stages were obtained by isoconversional(model-free) methods. Three stages in the reduction are Fe2O3→Fe3O4, Fe3O4→Fe O, and Fe O→Fe, which start at 912 K, 1255 K, and 1397 K, respectively. The CO content in the evolved gas is lower than the CO2content in the Fe2O3→Fe3O4stage but is substantially greater than the CO2 contents in the Fe3O4→Fe O and Fe O→Fe stages, where gasification starts at approximately 1205 K. The activation energy(E) of the three stages are 126–309 k J/mol, 628 k J/mol, and 648 k J/mol, respectively. The restrictive step of the total reduction is Fe O→Fe. If the rate of the total reduction is to be improved, the rate of the Fe O→Fe reduction should be improved first. The activation energy of the first stage is much lower than those of the latter two stages because of carbon gasification. Carbon gasification and FexOy reduction by CO, which are the restrictive step in the last two stages, require further study.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.21978230)Shaanxi Creative Talents Promotion Plan−Technological Innovation Team(Grant No.2019TD-039).
文摘Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas,in which oxygen transfer is achieved by a redox material.Although lots of efforts have been made to develop high-performance redox materials,a few studies have focused on the redox kinetics.In this work,the kinetics of SrFeO_(3−δ)–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor.During the methane reduction,combustion occurs before the partial oxidation and there exists a transition between them.The weight loss due to combustion increases,but the transition region becomes less inconspicuous as the reduction temperature increased.The weight loss associated with the partial oxidation is much larger than that with combustion.The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n=3(A3 model)with an activation energy of 59.8 kJ∙mol^(‒1).The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law.The partial oxidation is half order with respect to methane pressure.The proposed rate law could well predict the reduction kinetics;thus,it may be used to design and/or analyze a chemical looping reforming reactor.
文摘The rate of reducing Fet O in CaO-SiO2-Al2O3-Fet O slags with carbon saturated in molten iron has been determined in a graphite crucible in the temperature range of 1673-1773K. The effects of temperature, slag basicity and FetO content on the reduction rate have also been discussed. Test results show that the reduction rate increases with increasing temperature or FEtO concentration in slags, and the reduction rate has a parabolic relation with the simple basicity or optical basicity of slag, the maximum reduction rate being observed at around CaO/SiO2=1.5 of molten slags. The reduction reaction order is 1. 73 or 1.80, and the reduction activation energy is 299.9 or 295.9 kJ/mol in regard to Fet O weight content or Fet O activity calculated by using regular solution model, respectively. The reduction rate of CaO-SiO2-Al2 O3-Fet O slags with carbon saturated in molten iron is in the range of 0.32-3.48 mol-O/cm2·s.
基金financially supported by the National Basic Research Program of China(No.2007CB613700)the International Scientific and Technological Cooperation Program(No.2010DFR50010)
文摘Metallic magnesium was prepared by vacuumassisted carbothermic reduction method, and its morphologies were observed and analyzed. The reduction ratios of reactions were carried out under various vacuums, reaction temperatures, and time. Reaction kinetics of carbothermic reduction process was investigated. The results reveal that the morphologies of metallic magnesium sample that crystallized in the bottom and top sections of the condensation cap appear as the shape of feather with close-packing needle structure and the shape of schistose with metal luster,compactly clumpy structure, respectively. The reduction ratio of reaction process can be facilitated through reducing vacuum, increasing temperature, lengthening time, or their combinations and can reach up to 83.7 % under the condition of 10 Pa and 1573 K with 60 min reaction time. At1423-1573 K, the reaction rate constant k of carbothermic reduction of magnesia in vacuum gets greater with the increase of temperature. The reaction activity energy is190.28, 219.71 and 451.12-528.54 k J mol-1when the procedure of carbon gasification reaction, interfacial reaction, or gaseous diffusion is the reaction rate-determining step at 1423-1573 K, respectively. The gaseous diffusion procedure has the largest activity energy value and is,therefore, the main reaction rate-determining step.
基金Project(50725416) supported by National Natural Science Funds for Distinguished Young Scholars of China
文摘Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion.
基金financially supported by the National Natural Science Foundation of China(Nos.51874025 and 52174291)。
文摘Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen.Results show that wustite in both states can be reduced entirely at all temperatures.The thermal and kinetic conditions for the hydrogen reduction of molten phases are better than those when the reactants and products are in the solid state,with a higher reaction rate.The hydrogen reduction of different wustite phases fits the Mampel Power model(power exponent n=1/2)well,and this model is independent of the phase state.The average apparent activation energies of the reduction process calculated by the iso-conversional method are 5.85 kJ·mol^(−1) and 104.74 kJ·mol^(−1),when both reactants and products are in the solid state and the molten state,respectively.These values generally agree with those calculated by the model fitting method.
基金financially supported by the National Natural Science Foundation of China (No.51134002)the Fundamental Research Funds for the Central Universities of China (No.N140106001)
文摘The reduction kinetics of hematite in the presence of coke as a reductant was studied via isothermal and non-isothermal thermodynamic analyses. The isothermal reduction of hematite was conducted at a pre-determined temperature ranging from 1423 to 1573 K. The results indicated that a higher reduction temperature led to an increased reduction degree and an increased reduction rate. The non-isothermal reduction of hematite was carried out from room temperature to 1573 K at various heating rates from 5 to 15 K·min^(-1). A greater heating rate gave a greater reduction rate but decreased reduction degree. With an increase in temperature, both the reduction rate and the reduction degree increased at a smaller rate when the temperature was less than 1150 K, and they increased at a higher rate when the temperature was greater than 1150 K before completion of the reduction reaction. Both the isothermal and the non-isothermal reduction behaviors of hematite were described by the Avrami–Erofeev model. For the isothermal reduction, the apparent activation energy and pre-exponential factor were 171.25 kJ ·mol^(-1) and 1.80 × 10~5 min^(-1), respectively. In the case of non-isothermal reduction, however, the apparent activation energy and pre-exponential factor were correlated with the heating rate.
基金financially supported by the National Key Research and Development Program of China(Nos.2017YFA0701000 and 2016YFE0126900)the National Natural Science Foundation of China(Nos.51471006,51534009 and52621003)the Fundamental Research Funds for the Central Universities(Nos.ZYGX2018J024 and ZYGX2015Z010)。
文摘As an important powder material for scandate cathode,Sc_(2) O_(3)-doped WO_(3) powder together with hollow spherical WO_(3) for comparison was prepared by spraydrying method.The reduction behavior and kinetics of pure WO_(3) and Sc_(2) O_(3)-doped WO_(3) were studied by temperatureprogrammed reduction(TPR) method.It is found that scandia doping can decrease the reduction activation energy of WO_(3) and thus lower the reduction temperature and increase the reduction rate.Based on the kinetics results,the reduction techniques are presented.The obtained powder has a narrow size distribution in the range of 0.6-0.8 μm.
基金financially supported by the National Key Research and Development Program of China(2017YFB0304300 and 2017YFB0304302)the 111 Project(No.B13004)
文摘Cold-bonded pellets, to which a new type of inorganic binder was applied, were reduced by H2~CO mixtures with different HJCO molar ratios (1:0, 5:2, 1:1, 2:5, and 0:1) under various temperatures (1023, 1123, 1223, 1323, and 1423 K) in a daermogravimetric analysis appaxatus. The effects of gas composition, temperature, and binder ratio on the reduction process were studied, and the microstxucture of re- duced pellets was observed by scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS). The SEM-EDS images show that binder particles exist in pellets in two forms, and the form that binder particles completely surround ore particles has a more significant hin- der effect on the reduction. The reduction equilibrium constant, effective diffusion coefficient, and the reaction rate constant were calculated on the basis of the unreacted core model, and the promotion effect of temperature on reduction was further analyzed. The results show that no sintering phenomenon occurred at low temperatures and that the increasing reaction rate constant and high gas diffusion coefficient could main- tain the promotion effect of temperature; however, when the sintering phenomenon occurs at high temperatures, gas diffusion is hindered and the promotion effect is diminished. The contribution of the overaJl equilibrium constant to the promotion effect depends on the gas composition.
文摘The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.