The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
The objective of this paper is to propose a reduced-order observer for a class of Lipschitz nonlinear discrete-time systems.The conditions that guarantee the existence of this observer are presented in the form of lin...The objective of this paper is to propose a reduced-order observer for a class of Lipschitz nonlinear discrete-time systems.The conditions that guarantee the existence of this observer are presented in the form of linear matrix inequalities(LMIs). To handle the Lipschitz nonlinearities, the Lipschitz condition and the Young′s relation are adequately operated to add more degrees of freedom to the proposed LMI. Necessary and sufficient conditions for the existence of the unbiased reduced-order observer are given. An extension to H_∞ performance analysis is considered in order to deal with H_∞ asymptotic stability of the estimation error in the presence of disturbances that affect the state of the system. To highlight the effectiveness of the proposed design methodology, three numerical examples are considered. Then, high performances are shown through real time implementation using the ARDUINO MEGA 2560 device.展开更多
A novel unknown input reduced-order observer (UIRO) design scheme is presented. It is proved that unknown input appearing in measurement can be eliminated by a simple algebraic transformation. Then, a new UIRO design ...A novel unknown input reduced-order observer (UIRO) design scheme is presented. It is proved that unknown input appearing in measurement can be eliminated by a simple algebraic transformation. Then, a new UIRO design scheme is proposed via a transformation under no unknown input existing in measurement. Compared with other known results, the condition is weaker than others. So it was further reasonable. The design procedure proposed is simple and straightforward enough to be applied. An example is given to show its efficiency in fault diagnosis.展开更多
This paper designs and analyzes switching fuzzy reduced-order observer and proves that the corre- sponding separation principle does hold. A numerical simulation and comparison with smooth fuzzy full-order observer ar...This paper designs and analyzes switching fuzzy reduced-order observer and proves that the corre- sponding separation principle does hold. A numerical simulation and comparison with smooth fuzzy full-order observer are given to assess switching fuzzy reduced-order observer and the validity of the separation principles.展开更多
In this paper,target tracking for non-identical high-order networks is presented under the digraph network topology.The target agent has different dimensions with the followers.We first address a distributed dynamic s...In this paper,target tracking for non-identical high-order networks is presented under the digraph network topology.The target agent has different dimensions with the followers.We first address a distributed dynamic state feedback control law to solve the output tracking problem.Then a reduced-order observer is designed,and an observer-based dynamic output feedback control law is given for the case that the states of the agents are not fully measurable.Finally,some simulation results are given to illustrate the validity of the theoretical results.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexit...We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.展开更多
The multiscale computational method with asymptotic analysis and reduced-order homogenization(ROH)gives a practical numerical solution for engineering problems,especially composite materials.Under the ROH framework,a ...The multiscale computational method with asymptotic analysis and reduced-order homogenization(ROH)gives a practical numerical solution for engineering problems,especially composite materials.Under the ROH framework,a partition-based unitcell structure at the mesoscale is utilized to give a mechanical state at the macro-scale quadrature point with pre-evaluated influence functions.In the past,the“1-phase,1-partition”rule was usually adopted in numerical analysis,where one constituent phase at the mesoscale formed one partition.The numerical cost then is significantly reduced by introducing an assumption that the mechanical responses are the same all the time at the same constituent,while it also introduces numerical inaccuracy.This study proposes a new partitioning method for fibrous unitcells under a reduced-order homogenization methodology.In this method,the fiber phase remains 1 partition,but the matrix phase is divided into 2 partitions,which refers to the“12”partitioning scheme.Analytical elastic influence+functions are derived by introducing the elastic strain energy equivalence(Hill-Mandel condition).This research also obtains the analytical eigenstrain influence functions by alleviating the so-called“inclusion-locking”phenomenon.In addition,a numerical approach to minimize the error of strain energy density is introduced to determine the partitioning of the matrix phase.Several numerical examples are presented to compare the differences among direct numerical simulation(DNS),“11”,and“12”partitioning schemes.The numerical simulations show improved++numerical accuracy by the“12”partitioning scheme.展开更多
Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitation...Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.展开更多
With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roast...With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce...In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.展开更多
This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial...This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers.展开更多
During the startup of the hydraulic turbine generators,the hybrid magnetic bearing support system exhibits displacement fluctuations,and the nonlinearity and strong coupling characteristics of the magnetic bearings li...During the startup of the hydraulic turbine generators,the hybrid magnetic bearing support system exhibits displacement fluctuations,and the nonlinearity and strong coupling characteristics of the magnetic bearings limit the accuracy of rotor modeling,making traditional control methods difficult to adapt to parameter variations.To suppress startup disturbances and achieve a control strategy with low computational complexity and high precision,this paper proposes a five-degree-of-freedom hybrid magnetic bearing control strategy based on an improved cascaded reduced-order linear active disturbance rejection controller(CRLADRC).The front-stage reduced-order linear extended state observer(FRLESO)reduces the system’s computational complexity,enabling the system to maintain stability during motor startup disturbances.The second-stage reduced-order linear extended state observer(SRLESO)further enhances the system’s disturbance estimation accuracy while maintaining low computational complexity.Furthermore,the disturbance rejection and noise suppression capabilities are analyzed in the frequency domain and the stability of the proposed control method is proven using Lyapunov theory.Experimental results indicate that the proposed strategy effectively reduces displacement fluctuations in the hybrid magnetic bearing support system during motor startup,significantly enhancing the system’s robustness.展开更多
This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It e...This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It employs both full and reduced-order observer designs to facilitate trajectory monitoring and stabilisation.The Aero 2 platform is dynamically modelled using Euler-Lagrange equations to develop a multi-input multi-output(MIMO)system.This system comprises two inputs and four state equations.In collaboration with observers,the LQR and FOLQR controllers approximate states that are not directly measurable by utilising the system model and available data.This procedure effectively overcomes the practical limitations of sensors.The enhanced performance of FOLQR in terms of tracking precision and stability has been depicted from the experimental results,showing real-time execution on the Aero 2 platform.This paper provides rigorous insights into control engineering and advanced observer-based control design for underactuated systems.展开更多
In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stag...In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.展开更多
Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and a...Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
文摘The objective of this paper is to propose a reduced-order observer for a class of Lipschitz nonlinear discrete-time systems.The conditions that guarantee the existence of this observer are presented in the form of linear matrix inequalities(LMIs). To handle the Lipschitz nonlinearities, the Lipschitz condition and the Young′s relation are adequately operated to add more degrees of freedom to the proposed LMI. Necessary and sufficient conditions for the existence of the unbiased reduced-order observer are given. An extension to H_∞ performance analysis is considered in order to deal with H_∞ asymptotic stability of the estimation error in the presence of disturbances that affect the state of the system. To highlight the effectiveness of the proposed design methodology, three numerical examples are considered. Then, high performances are shown through real time implementation using the ARDUINO MEGA 2560 device.
文摘A novel unknown input reduced-order observer (UIRO) design scheme is presented. It is proved that unknown input appearing in measurement can be eliminated by a simple algebraic transformation. Then, a new UIRO design scheme is proposed via a transformation under no unknown input existing in measurement. Compared with other known results, the condition is weaker than others. So it was further reasonable. The design procedure proposed is simple and straightforward enough to be applied. An example is given to show its efficiency in fault diagnosis.
基金Supported by National Natural Science Foundation of China(60464001),the Program for 100 Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institutions
基金Supported by the National Laboratory of Space Intelligent Control and Open Foundation (Grant No. SIC07010202)the National Natural Science Foundation of China (Grant Nos. 60604010, 90716021, 60736023)
文摘This paper designs and analyzes switching fuzzy reduced-order observer and proves that the corre- sponding separation principle does hold. A numerical simulation and comparison with smooth fuzzy full-order observer are given to assess switching fuzzy reduced-order observer and the validity of the separation principles.
文摘In this paper,target tracking for non-identical high-order networks is presented under the digraph network topology.The target agent has different dimensions with the followers.We first address a distributed dynamic state feedback control law to solve the output tracking problem.Then a reduced-order observer is designed,and an observer-based dynamic output feedback control law is given for the case that the states of the agents are not fully measurable.Finally,some simulation results are given to illustrate the validity of the theoretical results.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
文摘We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth.
基金funded by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)“The Fundamental Research Funds for the Central Universities,Peking University”.
文摘The multiscale computational method with asymptotic analysis and reduced-order homogenization(ROH)gives a practical numerical solution for engineering problems,especially composite materials.Under the ROH framework,a partition-based unitcell structure at the mesoscale is utilized to give a mechanical state at the macro-scale quadrature point with pre-evaluated influence functions.In the past,the“1-phase,1-partition”rule was usually adopted in numerical analysis,where one constituent phase at the mesoscale formed one partition.The numerical cost then is significantly reduced by introducing an assumption that the mechanical responses are the same all the time at the same constituent,while it also introduces numerical inaccuracy.This study proposes a new partitioning method for fibrous unitcells under a reduced-order homogenization methodology.In this method,the fiber phase remains 1 partition,but the matrix phase is divided into 2 partitions,which refers to the“12”partitioning scheme.Analytical elastic influence+functions are derived by introducing the elastic strain energy equivalence(Hill-Mandel condition).This research also obtains the analytical eigenstrain influence functions by alleviating the so-called“inclusion-locking”phenomenon.In addition,a numerical approach to minimize the error of strain energy density is introduced to determine the partitioning of the matrix phase.Several numerical examples are presented to compare the differences among direct numerical simulation(DNS),“11”,and“12”partitioning schemes.The numerical simulations show improved++numerical accuracy by the“12”partitioning scheme.
基金supported by the National Natural Science Foundation of China(62133008,62303273,62188101,62373226,62473173)Young Taishan Scholars Program of Shandong Province of China(tsqn202408206)+2 种基金a Project of Shandong Province Higher Educational Youth and Innovation Talent Introduction and Education Programthe Natural Science Foundation of Shandong Province,China(ZR2023QF072)China Postdoctoral Science Foundation(2022M721932)
文摘Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.
基金supported in part by the National Key Research and Development Program of China(2022YFB3304900)in part by the National Natural Science Foundation of China(62394340 and 62073340)in part by the Science and Technology Innovation Program of Hunan Province(2022JJ10083).
文摘With the intelligent transformation of process manufacturing,accurate and comprehensive perception information is fundamental for application of artificial intelligence methods.In zinc smelting,the fluidized bed roaster is a key piece of large-scale equipment and plays a critical role in the manufacturing industry;its internal temperature field directly determines the quality of zinc calcine and other related products.However,due to its vast spatial dimensions,the limited observation methods,and the complex multiphase,multifield coupled reaction atmosphere inside it,accurately and timely perceiving its temperature field remains a significant challenge.To address these challenges,a spatial-temporal reduced-order model(STROM)is proposed,which can realize fast and accurate temperature field perception based on sparse observation data.Specifically,to address the difficulty in matching the initial physical field with the sparse observation data,an initial field construction based on data assimilation(IFCDA)method is proposed to ensure that the initial conditions of the model can be matched with the actual operation state,which provides a basis for constructing a high-precision computational fluid dynamics(CFD)model.Then,to address the high simulation cost of high-precision CFD models under full working conditions,a high uniformity(HU)-orthogonal test design(OTD)method with the centered L2 deviation is innovatively proposed to ensure high information coverage of the temperature field dataset under typical working conditions in terms of multiple factors and levels of the component,feed,and blast parameters.Finally,to address the difficulty in real-time and accurate temperature field prediction,considering the spatial correlation between the observed temperature and the temperature field,as well as the dynamic correlation of the observed temperature in the time dimension,a spatial-temporal predictive model(STPM)is established,which realizes rapid prediction of the temperature field through sparse observa-tion data.To verify the accuracy and validity of the proposed method,CFD model validation and reduced-order model prediction experiments are designed,and the results show that the proposed method can realize high-precision and fast prediction of the roaster temperature field under different working conditions through sparse observation data.Compared with the CFD model,the prediction root-mean-square error(RMSE)of STROM is less than 0.038,and the computational efficiency is improved by 3.4184×10^(4)times.In particular,STROM also has a good prediction ability for unmodeled conditions,with a prediction RMSE of less than 0.1089.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
基金supported by the Key Technology of Flexible Regulation of Energy in Green High-Efficiency/Carbon-Efficient Buildings under the Smart Park System of PowerChina Guiyang Co.,Ltd.(YJ2022-12)the Science and Technology Support Plan of Guizhou Province“Research and Application Development of Key Technologies for Flexible Regulation of Energy in High-Efficiency/Carbon-Efficient Buildings”(Guizhou Science and Technology Cooperation Support[2023]General 409).
文摘In permanent magnet synchronous motor(PMSM)control,the jitter problem affects the system performance,so a novel reaching lawis proposed to construct a non-singular fast terminal slidingmode controller(NFTSMC)to reduce the jitter.To enhance the immunity of the system,a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller.In addition,considering that the controller parameters are difficult to adjust,and the traditional zebra optimization algorithm(ZOA)is prone to converge prematurely and fall into local optimum when solving the optimal solution,the improved zebra optimization algorithm(IZOA)is proposed,and the ability of the IZOA in practical applications is verified by using international standard test functions.To verify the performance of IZOA,firstly,the adjustment time of IZOA is reduced by 71.67%compared with ZOA through the step response,and secondly,the tracking error of IZOA is reduced by 51.52%compared with ZOA through the sinusoidal signal following.To verify the performance of the designed controller based on disturbance observer,the designed controller reduces the speed overshoot from 2.5%to 0.63%compared with the traditional NFTSMC in the speed mutation experiment,which is a performance improvement of 70.8%,and the designed controller outperforms the traditional NFTSMC in the load mutation experiment,which is a performance improvement of 60.0%in the case of sudden load addition,and a performance improvement of 90.0%in the case of load release,which verifies that the designed controller outperforms the traditional NFTSMC.
文摘This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers.
基金supported by the National Natural Science Foundation of China under Grant 52302458the CAS Project for Young Scientists in Basic Research,Grant No.YSBR-045.
文摘During the startup of the hydraulic turbine generators,the hybrid magnetic bearing support system exhibits displacement fluctuations,and the nonlinearity and strong coupling characteristics of the magnetic bearings limit the accuracy of rotor modeling,making traditional control methods difficult to adapt to parameter variations.To suppress startup disturbances and achieve a control strategy with low computational complexity and high precision,this paper proposes a five-degree-of-freedom hybrid magnetic bearing control strategy based on an improved cascaded reduced-order linear active disturbance rejection controller(CRLADRC).The front-stage reduced-order linear extended state observer(FRLESO)reduces the system’s computational complexity,enabling the system to maintain stability during motor startup disturbances.The second-stage reduced-order linear extended state observer(SRLESO)further enhances the system’s disturbance estimation accuracy while maintaining low computational complexity.Furthermore,the disturbance rejection and noise suppression capabilities are analyzed in the frequency domain and the stability of the proposed control method is proven using Lyapunov theory.Experimental results indicate that the proposed strategy effectively reduces displacement fluctuations in the hybrid magnetic bearing support system during motor startup,significantly enhancing the system’s robustness.
文摘This study offers an empirical comparison of the Linear Quadratic Regulator(LQR)and Fractional Order LQR(FOLQR)controllers that were implemented on a two-degrees-offreedom(2-DOF)Quanser Aero 2 helicopter platform.It employs both full and reduced-order observer designs to facilitate trajectory monitoring and stabilisation.The Aero 2 platform is dynamically modelled using Euler-Lagrange equations to develop a multi-input multi-output(MIMO)system.This system comprises two inputs and four state equations.In collaboration with observers,the LQR and FOLQR controllers approximate states that are not directly measurable by utilising the system model and available data.This procedure effectively overcomes the practical limitations of sensors.The enhanced performance of FOLQR in terms of tracking precision and stability has been depicted from the experimental results,showing real-time execution on the Aero 2 platform.This paper provides rigorous insights into control engineering and advanced observer-based control design for underactuated systems.
基金funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Grant No.101026104)by the National Natural Science Foundation of China(Grant No.U20A6004)in part by the State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment(Grant No.JMDZ202314).
文摘In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.
基金Supported by National Key R&D Program of China(Grant No.2018YFB0105102)Anhui Provincial Natural Science Foundation(Grant No.2208085QE153).
文摘Automated valet parking systems based on parking automated guided vehicles(P-AGVs)are effective for improving parking convenience and increasing parking density.The ability of P-AGVs to move towards any position and attain any orientation simultaneously due to their mecanum wheels makes it convenient to transport vehicles in a parking lot.In this study,a nonlinear disturbance observer-based sliding mode controller for the trajectory tracking problem of a P-AGV is proposed.The kinematic and dynamic models for a P-AGV tracking trajectory are first analyzed in sequence and the influences of disturbing forces considered.Subsequently,a nonlinear disturbance observer(NDO)is designed to estimate the disturbing forces and torques generated by the caster wheels.Based on the designed NDO,a robust nonsingular terminal sliding-mode(NTSM)controller is used to track reference trajectories.The stabilities of the NDO and NDO-NTSM control systems are theoretically verified using their Lyapunov functions.Finally,simulations and experiments are performed to verify the effectiveness of the proposed control scheme.The experimental results show that the proposed NDO-NTSM controller can improve the trajectory tracking stability by 42-68%compared to a traditional NTSM controller.The NDO-based sliding mode controller for trajectory tracking proposed in this study can effectively reduce the impact of disturbances on trajectory tracking accuracy.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.