The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduce...The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduced order modeling method,the reduced order model based on principal component analysis and bidirectional long short-term memory networks(PBLSTM ROM),was developed to capture complex spatio-temporal dynamics of fluidized beds.By combining principal component analysis and Bidirectional long-short-term memory networks,the PBLSTM ROM effectively extracted dynamic evolution information without any prior knowledge of governing equations,enabling reduced-order modeling of unsteady flow fields.The PBLSTM ROM was validated using the solid volume fraction and gas velocity flow fields of a fluidized bed with immersed tubes,showing superior performance over both the PLSTM and PANN ROMs in accurately capturing temporal changes in the fluidization fields,especially in the region near immersed tubes where severe fluctuations appear.Moreover,the PBLSTM ROM improved the simulation speed by five orders of magnitude compared to traditional computational fluid dynamics simulations.These findings suggest that the PBLSTM ROM presents a promising approach for analyzing the complex fluid flows in engineering practice.展开更多
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational...Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.展开更多
Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aim...Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.展开更多
This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and ...This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.展开更多
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow confi...Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.展开更多
Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performa...Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.展开更多
In this paper, we study the price of catastrophe Options with counterparty credit risk in a reduced form model. We assume that the loss process is generated by a doubly stochastic Poisson process, the share price proc...In this paper, we study the price of catastrophe Options with counterparty credit risk in a reduced form model. We assume that the loss process is generated by a doubly stochastic Poisson process, the share price process is modeled through a jump-diffusion process which is correlated to the loss process, the interest rate process and the default intensity process are modeled through the Vasicek model: We derive the closed form formulae for pricing catastrophe options in a reduced form model. Furthermore, we make some numerical analysis on the explicit formulae.展开更多
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde...Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.展开更多
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g...This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.展开更多
Fastening failures have frequently been found on China high-speed railway curved tracks in recent years.Thus the influence of fastening failures on high-speed train-track interaction in curved track needs to be analyz...Fastening failures have frequently been found on China high-speed railway curved tracks in recent years.Thus the influence of fastening failures on high-speed train-track interaction in curved track needs to be analyzed.A train-curved slab track interaction model is built,in which the real shape of the curved rail is considered and modeled with reduced beam model(RBM)and curved beam theory,and the slabs are modeled with four-nodes Kirchhoff-Love plate elements.The present model is validated at first with different traditional models.Then the influence of fastening failure in curved slab track on train-track interaction dynamics is studied.A different number of failed fastenings is assumed to occur at the curved track,and different types of fastening failure including the fatigue fracture of the clip structure and failure of the rail pad are considered.Based on the calculation results,the fatigue fracture of the clip structure has little influence on train-track interaction dynamics.But when rail pad failure happens and its equivalent vertical stiffness and damping are less than one-tenth of its original,the fastening failure seriously affects the high-speed train operation safety,and it must be prevented.展开更多
A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined wi...A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method.展开更多
Computational fluid dynamics (CFD) modeling of the complex processes that occur within the burner of a gas turbine engine has become a critical step in the design process. However, due to computer limitations, it is...Computational fluid dynamics (CFD) modeling of the complex processes that occur within the burner of a gas turbine engine has become a critical step in the design process. However, due to computer limitations, it is very difficult to completely couple the fluid mechanics solver with the full combustion chemistry. Therefore, simplified chemistry models are required, and the topic of this research was to provide reduced chemistry models for CH4/O2 gas turbine flow fields to be integrated into CFD codes for the simulation of flow fields of natural gas-fueled burners. The reduction procedure for the CH4/O2 model utilized a response modeling technique wherein the full mechanism was solved over a range of temperatures, pressures, and mixture ratios to establish the response of a particular variable, namely the chemical reaction time. The conditions covered were between 1000 and 2500 K for temperature, 0.1 and 2 for equivalence ratio in air, and 0.1 and 50 atm for pressure. The kinetic time models in the form of ignition time correlations are given in Arrhenius-type formulas as functions of equivalence ratio, temperature, and pressure; or fuel-to-air ratio, temperature, and pressure. A single ignition time model was obtained for the entire range of conditions, and separate models for the low-temperature and high-temperature regions as well as for fuel-lean and rich cases were also derived. Predictions using the reduced model were verified using results from the full mechanism and empirical correlations from experiments. The models are intended for (but not limited to) use in CFD codes for flow field simulations of gas turbine combustors in which initial conditions and degree of mixedness of the fuel and air are key factors in achieving stable and robust combustion processes and acceptable emission levels. The chemical time model was utilized successfully in CFD simulations of a generic gas turbine combustor with four different cases with various levels of fuel-air premixing.展开更多
The four-dimensional(4D) printing technology, as a combination of additive manufacturing and smart materials, has attracted increasing research interest in recent years. The bilayer structures printed with smart mater...The four-dimensional(4D) printing technology, as a combination of additive manufacturing and smart materials, has attracted increasing research interest in recent years. The bilayer structures printed with smart materials using this technology can realize complicated deformation under some special stimuli due to the material properties.The deformation prediction of bilayer structures can make the design process more rapid and thus is of great importance. However, the previous works on deformation prediction of bilayer structures rarely study the complicated deformations or the influence of the printing process on deformation. Thus, this paper proposes a new method to predict the complicated deformations of temperature-sensitive 4D printed bilayer structures,in particular to the bilayer structures based on temperature-driven shape-memory polymers(SMPs) and fabricated using the fused deposition modeling(FDM) technology. The programming process to the material during printing is revealed and considered in the simulation model. Simulation results are compared with experiments to verify the validity of the method. The advantages of this method are stable convergence and high efficiency,as the three-dimensional(3D) problem is converted to a two-dimensional(2D) problem.The simulation parameters in the model can be further associated with the printing parameters, which shows good application prospect in 4D printed bilayer structure design.展开更多
Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulat...Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulator of cartilage matrix degradation during epiphyseal cartilage development. To study its function in OA progression, we performed surgical destabilization of the medial meniscus (DMM) to induce OA in two mouse models with reduced EGFR activity, one with genetic modification (, was/+ mice) and the other one with pharmacological inhibition (gefitinib treatment). Histological analyses and scoring at 3 months post-surgery revealed increased cartilage destruction and accelerated OA progression in both mouse models. TUNEL staining demonstrated that EGFR signaling protects chondrocytes from OA-induced apoptosis, which was further confirmed in primary chondrocyte culture. Immunohistochemistry showed increased aggrecan degradation in these mouse models, which coincides with elevated amounts of ADAMTS5 and matrix metalloproteinase 13 (MMP13), the principle proteinases responsible for aggrecan degradation, in the articular cartilage after DMM surgery. Furthermore, hypoxia-inducible factor 2α (HIF2α), a critical catabolic transcription factor stimulating MMP13 expression during OA, was also upregulated in mice with reduced EGFR signaling. Taken together, our findings demonstrate a primarily protective role of EGFR during OA progression by regulating chondrocyte survival and cartilage degradation.展开更多
This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity...This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity profiles from the PDE model. Hence, a discretization method is applied to obtain an equivalent ordinary differential equation model. However, after applying the discretization technique, the cost of solving the system increases as the size increases to a few thousands. It may be noted that after discretization,the degree of freedom of the system remain the same while the order increases. The large dynamic model is reduced using a proper orthogonal decomposition based technique and an equivalent model but of much reduced size is obtained. A controller based on optimal control theory is designed to obtain an input such that the output humidity reaches a desired profile and also its stability is analyzed.Numerical results are presented to show the validity of the reduced model and possible further extensions are identified.展开更多
In this article,we introduce a complete set of constitutive relations and field equations for the linear reduced micromorphic model.We further investigate the internal variables and their relationship in the case of t...In this article,we introduce a complete set of constitutive relations and field equations for the linear reduced micromorphic model.We further investigate the internal variables and their relationship in the case of two-dimensional(2D)wave propagation.The dynamic response is investigated for composite materials,which is due to an external wave in two dimensions applied at the boundary of the considered domain.Analytical solutions for the model are unavailable at this stage due to dependency of the field equations on spatial and time variables in a complicated manner.A finite element approach is adopted to derive approximate solutions for the field equations,and numerical finite element solutions for the internal fields are presented in detail and discussed.展开更多
A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different e...A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310- 375 K and initial pressure 0, 1-0.3 MPa, The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.展开更多
In this current paper, the exposure time effects on four endocrine disruptors and teleost fishes were evaluated using the reduced life expectancy (RLE) model based on the effect concentration (EC<sub>50</sub&...In this current paper, the exposure time effects on four endocrine disruptors and teleost fishes were evaluated using the reduced life expectancy (RLE) model based on the effect concentration (EC<sub>50</sub>) of available literature published. The result on the regression analysis over different exposure times has demonstrated that the EC<sub>50</sub> of hepatic biomarkers falls with increasing exposure times in a predictable manner. The slopes of the regression equations reflect the strength of the toxic effects on the various teleost fish. The EC<sub>50</sub> reduction over time can be interpreted based on the bioconcentration process, which can be used to understand transfer routes of the compounds from water to fish body. RLE model also provides useful information in assessing the toxic effects on fish life expectancy as a result of the occurrence of compounds.展开更多
In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two red...In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.展开更多
During the EAST radiative divertor experiments,one of the key challenges was how to avoid the occurrence of disruptive events caused by excessive impurity seeding.To estimate the required impurity fraction for diverto...During the EAST radiative divertor experiments,one of the key challenges was how to avoid the occurrence of disruptive events caused by excessive impurity seeding.To estimate the required impurity fraction for divertor detachment,we introduce a reduced edge plasma radiation model.In the model,based on the momentum conservation along the magnetic field line,the upstream pressure is determined by the plasma density and temperature at the divertor target,and then the impurity radiation loss is obtained by the balance of the heat and particle fluxes.It is found that the required impurity fraction shows a non-monotonic variation with divertor electron temperature(T_(d))when 0.1 eV<T_(d)<10 eV.In the range of 0.1 eV<T_(d)<1 e V,the position near the valley of required impurity fraction corresponds to strong plasma recombination.Due to the dependence of the volumetric momentum loss effect on the T_(d)in the range of 1 eV<T_(d)<10 eV,the required impurity fraction peaks and then decreases as T_(d)is increased.Compared to neon,the usage of argon reduces the impurity fraction by about twice.In addition,for the various fitting parameters in the pressure-momentum loss model,it is shown that the tendency of required impurity fraction with T_(d)always increases first and then decreases in the range of 1 eV<T_(d)<10 eV,but the required impurity fraction decreases when the model that characterizes the strong loss in pressure momentum is used.展开更多
基金supported by the National Key R&D Program of China(grant No.2021YFF0500400)Key Research Program of Shaanxi Province(grant No.2022GXLH-01-08)+2 种基金National Key R&D Program of China(grant No.2018YFB1501003)Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team(grant No.2022KXJ-179)Targeted Funding Program of Power Construction Corporation of China(grant No.DJ-PTZX-2021-03).
文摘The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduced order modeling method,the reduced order model based on principal component analysis and bidirectional long short-term memory networks(PBLSTM ROM),was developed to capture complex spatio-temporal dynamics of fluidized beds.By combining principal component analysis and Bidirectional long-short-term memory networks,the PBLSTM ROM effectively extracted dynamic evolution information without any prior knowledge of governing equations,enabling reduced-order modeling of unsteady flow fields.The PBLSTM ROM was validated using the solid volume fraction and gas velocity flow fields of a fluidized bed with immersed tubes,showing superior performance over both the PLSTM and PANN ROMs in accurately capturing temporal changes in the fluidization fields,especially in the region near immersed tubes where severe fluctuations appear.Moreover,the PBLSTM ROM improved the simulation speed by five orders of magnitude compared to traditional computational fluid dynamics simulations.These findings suggest that the PBLSTM ROM presents a promising approach for analyzing the complex fluid flows in engineering practice.
基金supported by the National Key R&D Program of China under Grant No.2021ZD0110400.
文摘Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods.
基金supported by the National Natural Science Foundation of China (Nos. 11372036, 50875024)Excellent Young Scholars Research Fund of Beijing Institute of Technology of China (No. 2010Y0102)
文摘Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.
文摘This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
基金Supported by National Natural Science Foundation of China(Grant No.11372036)
文摘Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
基金co-National Science and Technology Major Project(No.2017-II-0009-0023)Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2019DYDS09)。
文摘Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.
基金supported by the National Natural Science Foundation of China(11371274)
文摘In this paper, we study the price of catastrophe Options with counterparty credit risk in a reduced form model. We assume that the loss process is generated by a doubly stochastic Poisson process, the share price process is modeled through a jump-diffusion process which is correlated to the loss process, the interest rate process and the default intensity process are modeled through the Vasicek model: We derive the closed form formulae for pricing catastrophe options in a reduced form model. Furthermore, we make some numerical analysis on the explicit formulae.
基金National Natural Science Foundation of China (10902082)New Faculty Research Foundation of XJTUthe Fundamental Research Funds for the Central Universities (xjj20100126)
文摘Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.
文摘This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12072293)the Project of State Key Laboratory of Traction Power for Southwest Jiaotong University(Grant No.2021TPL-T10)+2 种基金China Scholarship Council(Grant No.202007000115)the Key Scientific Research Fund Project of Sichuan Education Department(Grant No.18ZA0454)the Key Research Program of Xihua University(Grant No.Z1020212).
文摘Fastening failures have frequently been found on China high-speed railway curved tracks in recent years.Thus the influence of fastening failures on high-speed train-track interaction in curved track needs to be analyzed.A train-curved slab track interaction model is built,in which the real shape of the curved rail is considered and modeled with reduced beam model(RBM)and curved beam theory,and the slabs are modeled with four-nodes Kirchhoff-Love plate elements.The present model is validated at first with different traditional models.Then the influence of fastening failure in curved slab track on train-track interaction dynamics is studied.A different number of failed fastenings is assumed to occur at the curved track,and different types of fastening failure including the fatigue fracture of the clip structure and failure of the rail pad are considered.Based on the calculation results,the fatigue fracture of the clip structure has little influence on train-track interaction dynamics.But when rail pad failure happens and its equivalent vertical stiffness and damping are less than one-tenth of its original,the fastening failure seriously affects the high-speed train operation safety,and it must be prevented.
基金supported by the National Science and Technology Major Project, China (No. 2017-II-0009-0023)the Aeronautical Science Foundation of China(No. 2020Z039053004)the Fundamental Research Funds for the Central Universities, China (No. 3102019OQD701)
文摘A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method.
基金supported by a University Turbine Systems Research grant from the South Carolina Institute for Energy Studies, contract number 04-01-SR114
文摘Computational fluid dynamics (CFD) modeling of the complex processes that occur within the burner of a gas turbine engine has become a critical step in the design process. However, due to computer limitations, it is very difficult to completely couple the fluid mechanics solver with the full combustion chemistry. Therefore, simplified chemistry models are required, and the topic of this research was to provide reduced chemistry models for CH4/O2 gas turbine flow fields to be integrated into CFD codes for the simulation of flow fields of natural gas-fueled burners. The reduction procedure for the CH4/O2 model utilized a response modeling technique wherein the full mechanism was solved over a range of temperatures, pressures, and mixture ratios to establish the response of a particular variable, namely the chemical reaction time. The conditions covered were between 1000 and 2500 K for temperature, 0.1 and 2 for equivalence ratio in air, and 0.1 and 50 atm for pressure. The kinetic time models in the form of ignition time correlations are given in Arrhenius-type formulas as functions of equivalence ratio, temperature, and pressure; or fuel-to-air ratio, temperature, and pressure. A single ignition time model was obtained for the entire range of conditions, and separate models for the low-temperature and high-temperature regions as well as for fuel-lean and rich cases were also derived. Predictions using the reduced model were verified using results from the full mechanism and empirical correlations from experiments. The models are intended for (but not limited to) use in CFD codes for flow field simulations of gas turbine combustors in which initial conditions and degree of mixedness of the fuel and air are key factors in achieving stable and robust combustion processes and acceptable emission levels. The chemical time model was utilized successfully in CFD simulations of a generic gas turbine combustor with four different cases with various levels of fuel-air premixing.
基金the National Natural Science Foundation of China(Nos.52130501 and 52075479)the National Key R&D Program of China(No.2018YFB1700804)。
文摘The four-dimensional(4D) printing technology, as a combination of additive manufacturing and smart materials, has attracted increasing research interest in recent years. The bilayer structures printed with smart materials using this technology can realize complicated deformation under some special stimuli due to the material properties.The deformation prediction of bilayer structures can make the design process more rapid and thus is of great importance. However, the previous works on deformation prediction of bilayer structures rarely study the complicated deformations or the influence of the printing process on deformation. Thus, this paper proposes a new method to predict the complicated deformations of temperature-sensitive 4D printed bilayer structures,in particular to the bilayer structures based on temperature-driven shape-memory polymers(SMPs) and fabricated using the fused deposition modeling(FDM) technology. The programming process to the material during printing is revealed and considered in the simulation model. Simulation results are compared with experiments to verify the validity of the method. The advantages of this method are stable convergence and high efficiency,as the three-dimensional(3D) problem is converted to a two-dimensional(2D) problem.The simulation parameters in the model can be further associated with the printing parameters, which shows good application prospect in 4D printed bilayer structure design.
基金supported by ASBMR Research Career Enhancement Award (to LQ)NIH grants AR060991 (to LQ)AR062908 (to ME-I)
文摘Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulator of cartilage matrix degradation during epiphyseal cartilage development. To study its function in OA progression, we performed surgical destabilization of the medial meniscus (DMM) to induce OA in two mouse models with reduced EGFR activity, one with genetic modification (, was/+ mice) and the other one with pharmacological inhibition (gefitinib treatment). Histological analyses and scoring at 3 months post-surgery revealed increased cartilage destruction and accelerated OA progression in both mouse models. TUNEL staining demonstrated that EGFR signaling protects chondrocytes from OA-induced apoptosis, which was further confirmed in primary chondrocyte culture. Immunohistochemistry showed increased aggrecan degradation in these mouse models, which coincides with elevated amounts of ADAMTS5 and matrix metalloproteinase 13 (MMP13), the principle proteinases responsible for aggrecan degradation, in the articular cartilage after DMM surgery. Furthermore, hypoxia-inducible factor 2α (HIF2α), a critical catabolic transcription factor stimulating MMP13 expression during OA, was also upregulated in mice with reduced EGFR signaling. Taken together, our findings demonstrate a primarily protective role of EGFR during OA progression by regulating chondrocyte survival and cartilage degradation.
文摘This paper considers the problem of simulating the humidity distributions of a grain storage system. The distributions are described by partial differential equations(PDE). It is quite difficult to obtain the humidity profiles from the PDE model. Hence, a discretization method is applied to obtain an equivalent ordinary differential equation model. However, after applying the discretization technique, the cost of solving the system increases as the size increases to a few thousands. It may be noted that after discretization,the degree of freedom of the system remain the same while the order increases. The large dynamic model is reduced using a proper orthogonal decomposition based technique and an equivalent model but of much reduced size is obtained. A controller based on optimal control theory is designed to obtain an input such that the output humidity reaches a desired profile and also its stability is analyzed.Numerical results are presented to show the validity of the reduced model and possible further extensions are identified.
文摘In this article,we introduce a complete set of constitutive relations and field equations for the linear reduced micromorphic model.We further investigate the internal variables and their relationship in the case of two-dimensional(2D)wave propagation.The dynamic response is investigated for composite materials,which is due to an external wave in two dimensions applied at the boundary of the considered domain.Analytical solutions for the model are unavailable at this stage due to dependency of the field equations on spatial and time variables in a complicated manner.A finite element approach is adopted to derive approximate solutions for the field equations,and numerical finite element solutions for the internal fields are presented in detail and discussed.
基金SUPPORTED BY NATIONAL KEY BASIC RESEARCH PLAN ("973" PLAN, NO. 2001CB209202).
文摘A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310- 375 K and initial pressure 0, 1-0.3 MPa, The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.
文摘In this current paper, the exposure time effects on four endocrine disruptors and teleost fishes were evaluated using the reduced life expectancy (RLE) model based on the effect concentration (EC<sub>50</sub>) of available literature published. The result on the regression analysis over different exposure times has demonstrated that the EC<sub>50</sub> of hepatic biomarkers falls with increasing exposure times in a predictable manner. The slopes of the regression equations reflect the strength of the toxic effects on the various teleost fish. The EC<sub>50</sub> reduction over time can be interpreted based on the bioconcentration process, which can be used to understand transfer routes of the compounds from water to fish body. RLE model also provides useful information in assessing the toxic effects on fish life expectancy as a result of the occurrence of compounds.
文摘In this study, combustion of methane was simulated using four kinetic models of methane in CHEMKIN 4.1.1 for 0-D closed internal combustion (IC) engine reactor. Two detailed (GRIMECH3.0 & UBC MECH2.0) and two reduced (One step & Four steps) models were examined for various IC engine designs. The detailed models (GRIMECH3.0, & UBC MECH2.0) and 4-step models successfully predicted the combustion while global model was unable to predict any combustion reaction. This study illustrated that the detailed model showed good concordances in the prediction of chamber pressure, temperature and major combustion species profiles. The detailed models also exhibited the capabilities to predict the pollutants formation in an IC engine while the reduced schemes showed failure in the prediction of pollutants emissions. Although, there are discrepancies among the profiles of four considered model, the detailed models (GRIMECH3.0 & UBC MECH2.0) produced the acceptable agreement in the species prediction and formation of pollutants.
基金supported by National Natural Science Foundation of China(No.12375227)Innovation in Fusion Engineering Technology of Institute(No.E35QT1080C)。
文摘During the EAST radiative divertor experiments,one of the key challenges was how to avoid the occurrence of disruptive events caused by excessive impurity seeding.To estimate the required impurity fraction for divertor detachment,we introduce a reduced edge plasma radiation model.In the model,based on the momentum conservation along the magnetic field line,the upstream pressure is determined by the plasma density and temperature at the divertor target,and then the impurity radiation loss is obtained by the balance of the heat and particle fluxes.It is found that the required impurity fraction shows a non-monotonic variation with divertor electron temperature(T_(d))when 0.1 eV<T_(d)<10 eV.In the range of 0.1 eV<T_(d)<1 e V,the position near the valley of required impurity fraction corresponds to strong plasma recombination.Due to the dependence of the volumetric momentum loss effect on the T_(d)in the range of 1 eV<T_(d)<10 eV,the required impurity fraction peaks and then decreases as T_(d)is increased.Compared to neon,the usage of argon reduces the impurity fraction by about twice.In addition,for the various fitting parameters in the pressure-momentum loss model,it is shown that the tendency of required impurity fraction with T_(d)always increases first and then decreases in the range of 1 eV<T_(d)<10 eV,but the required impurity fraction decreases when the model that characterizes the strong loss in pressure momentum is used.