This paper deals with the recovery of ilmenite mineral from red sediments of badlands topography and suggested flowsheet with material balance.The results of these investigations reveal that the red sediment samples c...This paper deals with the recovery of ilmenite mineral from red sediments of badlands topography and suggested flowsheet with material balance.The results of these investigations reveal that the red sediment samples contain 33.2%total heavy mineral,in which ilmenite mineral concentrate is 28.71%(by weight).The ilmenite concentrate recovered from red sediment sample by physical benefciation process,which included scrubbing,desliming,gravity concentration,magnetic and electrostatic separation,contains 99.41%grade with 97.3%recovery.The ilmenite mineral concentrate recovered from red sediments is also suitable for industrial applications.The characterization studies on ilmenite reveal that the TiO2percentage is marginally increasing from 46.69%to 47.86%with increasing magnetic intensity from0.46 to 1.55 T.展开更多
In this paper an attempt is made to recover sillimanite by flotation tree analysis process and conventional flotation process from non magnetic fraction of red sediments.The experimental results of both the processes ...In this paper an attempt is made to recover sillimanite by flotation tree analysis process and conventional flotation process from non magnetic fraction of red sediments.The experimental results of both the processes are presented.The data reveal that the deslimed sample contains 33.2%(by weight) total heavy minerals and out of which the sillimanite mineral content is 3.6%(by weight).It is observed that flotation tree analysis needs 10 cells to get five output products and where as conventional flotation process needs 15 cells to recover similar grade of five output products.Thus,flotation tree analysis is not only economic process but also efficient process(to say efficient process,the tree analysis product should be higher grade).展开更多
Layer LJ3 of Linjiang stratigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence(TL) dating,it was found to be formed in MIS2-9...Layer LJ3 of Linjiang stratigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence(TL) dating,it was found to be formed in MIS2-9,500 ± 800 yr to 19,600 ± 1,800 yr B.P.After analy-sis of the grain sizes of the 16 samples(LJ3-100 to LJ3-85) in this layer,it was discovered that(1) The contents of each grain group in dif-ferent samples are similar.(2) The values of Md,Mz,,Sk,and Kg vary from LJ3-100 to LJ3-85 in a narrow range.(3) The segments of each sample in the accumulative curves extend parallel with similar slopes.All the three aspects reveal the Aeolian characteristics of Layer LJ3.Therefore,it is thought that Layer LJ3 consists of red sandy sediments formed in MIS2 in the south of Nanling Mountain,which reflects the arid climate at that time.展开更多
The badland topography of Basanputti Village, Ganjam District, Odisha, possesses red sediments. The typical red sediment deposit, on average, consists of 71.8% total heavy minerals (THM), out of which 62.1% are ilme...The badland topography of Basanputti Village, Ganjam District, Odisha, possesses red sediments. The typical red sediment deposit, on average, consists of 71.8% total heavy minerals (THM), out of which 62.1% are ilmenite. The other heavy minerals sillimanite, zircon, garnet, monazite, and pyriboles are in the order of abundance identified. In this present study, Mozley mineral separator has been used to recover THM from red sediment. Mineral separator results indicate that a product ob- tained contains 72.2% by weight with 94.4% THM and 95% recovery. The ilmenite concentrate recov- ered using dry low-intensity magnetic separator from the THM concentrate can be used in pigment in- dustries after suitable pyrometallurgical/chemical processing methods.展开更多
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red so...Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH4+-N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.展开更多
文摘This paper deals with the recovery of ilmenite mineral from red sediments of badlands topography and suggested flowsheet with material balance.The results of these investigations reveal that the red sediment samples contain 33.2%total heavy mineral,in which ilmenite mineral concentrate is 28.71%(by weight).The ilmenite concentrate recovered from red sediment sample by physical benefciation process,which included scrubbing,desliming,gravity concentration,magnetic and electrostatic separation,contains 99.41%grade with 97.3%recovery.The ilmenite mineral concentrate recovered from red sediments is also suitable for industrial applications.The characterization studies on ilmenite reveal that the TiO2percentage is marginally increasing from 46.69%to 47.86%with increasing magnetic intensity from0.46 to 1.55 T.
文摘In this paper an attempt is made to recover sillimanite by flotation tree analysis process and conventional flotation process from non magnetic fraction of red sediments.The experimental results of both the processes are presented.The data reveal that the deslimed sample contains 33.2%(by weight) total heavy minerals and out of which the sillimanite mineral content is 3.6%(by weight).It is observed that flotation tree analysis needs 10 cells to get five output products and where as conventional flotation process needs 15 cells to recover similar grade of five output products.Thus,flotation tree analysis is not only economic process but also efficient process(to say efficient process,the tree analysis product should be higher grade).
基金funded by the National Natural Science Foundation of China (No 40471139)National Basic Research Program of China (No 2004CB 720206)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment, Chinese Academy of Sci-ences Foundation (No SKLLQG0309)
文摘Layer LJ3 of Linjiang stratigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence(TL) dating,it was found to be formed in MIS2-9,500 ± 800 yr to 19,600 ± 1,800 yr B.P.After analy-sis of the grain sizes of the 16 samples(LJ3-100 to LJ3-85) in this layer,it was discovered that(1) The contents of each grain group in dif-ferent samples are similar.(2) The values of Md,Mz,,Sk,and Kg vary from LJ3-100 to LJ3-85 in a narrow range.(3) The segments of each sample in the accumulative curves extend parallel with similar slopes.All the three aspects reveal the Aeolian characteristics of Layer LJ3.Therefore,it is thought that Layer LJ3 consists of red sandy sediments formed in MIS2 in the south of Nanling Mountain,which reflects the arid climate at that time.
基金supported by Board of Research for Nuclear Sciences,Mumbai,Department of Atomic Energy,India
文摘The badland topography of Basanputti Village, Ganjam District, Odisha, possesses red sediments. The typical red sediment deposit, on average, consists of 71.8% total heavy minerals (THM), out of which 62.1% are ilmenite. The other heavy minerals sillimanite, zircon, garnet, monazite, and pyriboles are in the order of abundance identified. In this present study, Mozley mineral separator has been used to recover THM from red sediment. Mineral separator results indicate that a product ob- tained contains 72.2% by weight with 94.4% THM and 95% recovery. The ilmenite concentrate recov- ered using dry low-intensity magnetic separator from the THM concentrate can be used in pigment in- dustries after suitable pyrometallurgical/chemical processing methods.
文摘Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH4+-N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.