Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM&...Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM's higher concentrations of metal components,particularly Fe_(2)O_(3)and rare earth elements(REEs),render RM promising for catalytic application.Hence,this work showed an efficient high-speed RM to catalyze electrocatalytic nitrate-to-ammonia reduction reaction(NARR).RM calcined at 500℃(RM-500)exhibited excellent catalytic performance.Faradaic efficiency of ammonia(FENH_(3))in an electrolyte solution containing 1 mol·L^(-1)NO_(3)-achieved a maximum value of 92.3%at-0.8 V(vs.RHE).Additionally,24-h cycle testing and post-reaction PXRD and SEM indicated that the RM-500 electrocatalyst is stable during NARR.The RM-500 demonstrated a high FE of NH_(3)-to-NO_(3)-of 89.7%at 1.85 V(vs.RHE),showing great potential in the ammonia fuel cells technology and achieving the nitrogen cycle.展开更多
Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,...Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.展开更多
The effects of major veins severing on morphological and physiological features of sweetgum (Liquidambar styraciflua L.) leaves were investigated by observing leaf color change and measuring leaf temperature, green/...The effects of major veins severing on morphological and physiological features of sweetgum (Liquidambar styraciflua L.) leaves were investigated by observing leaf color change and measuring leaf temperature, green/luminance (G/L) value of half-lobes, leaf stomata conductance, and water content in Yamaguchi University, Japan. The palmately veined leaves of sweetgum (Liquidambar styraciflua L.) were found more sensitive to the major vein severing than that of other species Major veins severing resulted in serious water stresses, as indicated by the persistent reddening and/or advanced reddening of local leaf, lower leaf stomatal conductance, and higher leaf temperature, etc. Severed leaf can be clearly divided into non-severed area, transitional area, and stressed area, which the three areas have different colours and temperature. The major vein barrier can also be seen clearly. The persistent reddening and advanced reddening seem consistent with the phenomenon of red crown top of some sweetgum trees and may have similar mechanism.展开更多
To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compress...To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compression and uniaxial loading–unloading tests were conducted under five saturation levels.The effect of saturation on the mechanical properties and elastic energy density was analyzed,and a method for obtaining peak energy density was proposed.The effect of saturation on the energy evolution was examined,and the energy mechanism of water in preventing rockburst was revealed.The results indicate that an increase in saturation of red sandstone decreases the input energy density,elastic energy density,dissipated energy density,peak strength and peak strain;the compaction phase of the stress–strain curve becomes shorter;the failure mode transitions from X-conjugate oblique shear to single oblique shear;the variation in the debris ejection trajectory is as follows:radiation→X-ray→oblique upward parabola→horizontal parabola→oblique downward parabola;the degree of failure intensity and fragmentation is decreased gradually.Elastic energy density is interconnected with both saturation and stress but independent of the loading path.Saturation exhibits a dual effect on the energy storage property,i.e.,increasing saturation increases the energy storage efficiency and reduces the energy storage capacity.The ratio of peak elastic energy density to peak input energy density remains constant irrespective of saturation levels.Water prevents rockburst by decreasing the energy storage capacity of surrounding rock,alleviating the stress of surrounding rock to reduce energy storage,and elevating the energy release threshold of high-energy surrounding rock.The findings of this study contribute to understanding the effect of water on rock failure from an energy perspective,as well as provide theoretical guidance for rockburst prevention by water in deep tunnels.展开更多
BACKGROUND As red blood cell distribution width(RDW)and albumin have been shown to be independent predictors of mortality from various diseases,this study aimed to investigate the effect of the RDW to albumin ratio(RA...BACKGROUND As red blood cell distribution width(RDW)and albumin have been shown to be independent predictors of mortality from various diseases,this study aimed to investigate the effect of the RDW to albumin ratio(RA)as an independent predictor of the prognosis of patients admitted to the coronary care unit(CCU).AIM To use the RDW and albumin level to predict the prognosis of patients in the CCU.METHODS Data were obtained from the Medical Information Mart Intensive Care III database.The primary outcome was 365-day all-cause mortality,whereas the secondary outcomes were 30-and 90-day all-cause mortality,hospital length of stay(LOS),and CCU LOS.Cox proportional hazards regression model,propen-sity score matching,and receiver operating characteristic curve analyses were used.RESULTS The hazard ratio(95%confidence interval)of the upper tertile(RA>4.66)was 1.62(1.29 to 2.03)when compared with the reference(RA<3.84)in 365-day all-cause mortality.This trend persisted after adjusting for demographic and clinical variables in the propensity score-matching analysis.Similar trends were observed for the secondary outcomes of hospital and CCU LOS.Receiver operating characteristic curve analysis was performed by combining the RA and sequential organ failure assessment(SOFA)scores,and the C-statistic was higher than that of the SOFA scores(0.733 vs 0.702,P<0.001).CONCLUSION RA is an independent prognostic factor in patients admitted to the CCU.RA combined with the SOFA score can improve the predictive ability of the SOFA score.However,our results should be verified in future prospective studies.展开更多
On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single...On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.展开更多
Assessing the threat status of species in response to global change is critical for biodiversity monitoring and conservation efforts.However,current frameworks,even the IUCN Red List,often neglect critical factors suc...Assessing the threat status of species in response to global change is critical for biodiversity monitoring and conservation efforts.However,current frameworks,even the IUCN Red List,often neglect critical factors such as genetic diversity and the impacts of climate and land-use changes,hindering effective conservation planning.To address these limitations,we developed an enhanced extinction risk assessment framework using Diploderma lizards as a model.This framework incorporates long-term field surveys,environmental data,and land-use information to predict distributional changes for 10 recently described Diploderma species on the Qinghai-Xizang Plateau,which hold ecological significance but remain underassessed in conservation assessment.By integrating the distribution data and genetically inferred effective population sizes(Ne),we conducted scenario analyses and used a rank-sum approach to calculate Risk ranking scores(RRS)for each species.This approach revealed significant discrepancies with the IUCN Red List assessments.Notably,D.yangi and D.qilin were identified as facing the highest extinction risk.Furthermore,D.vela,D.batangense,D.flaviceps,D.dymondi,D.yulongense,and D.laeviventre,currently classified as“Least Concern”,were found to warrant reclassification as“Vulnerable”due to considerable threat from projected range contractions.Exploring the relationship between morphology and RRS revealed that traits such as snout-vent length and relative tail length could serve as potential predictors of extinction risk,offering preliminary metrics for assessing species vulnerability when comprehensive data are unavailable.This study enhances the precision of extinction risk assessment frameworks and demonstrates their capacity to refine and update risk assessments,especially for lesser-known taxa.展开更多
The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechani...The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechanical properties and structural behavior of contaminated soils during carbonation can vary significantly due to differences in soil composition.This study examines the potential application and underlying mechanisms of reactive MgO carbonation in improving the mechanical properties of Pb-contaminated red clay.The findings demonstrate that Pb-contaminated red clay transitions from a plastic to a brittle state following reactive MgO carbonation.After 1 h of treatment,the strength of the red clay exceeded 3 MPa,even at high Pb^(2+)concentrations.The deformation modulus to unconfined compressive strength(UCS)ratio was calculated to be 37.761,with the failure strain primarily ranging from 1.5%to 4.0%.A strength prediction model for the reactive MgO-stabilized Pb-contaminated red clay was proposed,which showed good predictive accuracy.Furthermore,reactive MgO carbonation significantly reduced the Pb leaching concentration in the high-level Pb-contaminated soil to below 0.1 mg/L.Microscopic analysis revealed that an optimal amount of hydrated magnesium carbonates(HMCs)formed a stable and compact structure with the soil particles.However,long-term carbonation causes red clay particles to become sandy,and excessive HMCs can harm the soil structure.Therefore,to maximize the strength improvement while avoiding structural damage,the carbonation time should be controlled to 1 h.展开更多
Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely bee...Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts.展开更多
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ...Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.展开更多
The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction ...The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction of Fe^(3+)markedly improves the UC intensity by a factor of 13.The mechanism behind the enhanced UC red luminescence is deduced to originate from the Yb^(3+)-Fe^(3+)dimer,as determined by first principle calculation and analysis of UC luminescence properties.The thermometry performance,based on splitting peaks of red emission,demonstrated enhanced temperature sensitivity at lower ranges.Exploring the photothermal properties,it was observed that temperature exhibited a linear correlation with pump power under a 980 nm laser,achieving levels up to 48℃.This temperature range is ideal for applications in mild photothermal therapy(MPTT).This work elucidates the material’s potential in advanced biological applications,merging optical thermometry and photothermics,indicating its multifunctional utility.展开更多
BACKGROUND Red blood cell distribution width(RDW)is associated with the development and progression of various diseases.AIM To explore the association between pretreatment RDW and short-term outcomes after laparoscopi...BACKGROUND Red blood cell distribution width(RDW)is associated with the development and progression of various diseases.AIM To explore the association between pretreatment RDW and short-term outcomes after laparoscopic pancreatoduodenectomy(LPD).METHODS A total of 804 consecutive patients who underwent LPD at our hospital between March 2017 and November 2021 were retrospectively analyzed.Correlations between pretreatment RDW and clinicopathological characteristics and short-term outcomes were investigated.RESULTS Patients with higher pretreatment RDW were older,had higher Eastern Cooperative Oncology Group scores and were associated with poorer short-term outcomes than those with normal RDW.High pretreatment RDW was an independent risk factor for postoperative complications(POCs)(hazard ratio=2.973,95%confidence interval:2.032-4.350,P<0.001)and severe POCs of grade IIIa or higher(hazard ratio=3.138,95%confidence interval:2.042-4.824,P<0.001)based on the Clavien-Dino classification system.Subgroup analysis showed that high pretreatment RDW was an independent risk factor for Clavien-Dino classi-fication grade IIIb or higher POCs,a comprehensive complication index score≥26.2,severe postoperative pancreatic fistula,severe bile leakage and severe hemorrhage.High pretreatment RDW was positively associated with the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and was negatively associated with albumin and the prognostic nutritional index.CONCLUSION Pretreatment RDW was a special parameter for patients who underwent LPD.It was associated with malnutrition,severe inflammatory status and poorer short-term outcomes.RDW could be a surrogate marker for nutritional and inflammatory status in identifying patients who were at high risk of developing POCs after LPD.展开更多
Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation...The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation of a patient in the emergency department(ED),Code Crimson activation facilitates rapid decisionmaking by multi-disciplinary specialists for definitive haemorrhage control in operating theatre(OT)and/or interventional radiology(IR)suite.Once this decision has been made,there may still be various factors that lead to delay in transporting the patient from ED to OT/IR.Red Blanket protocol identifies and addresses these factors and processes which cause delay,and aims to facilitate rapid and safe transport of the haemodynamically unstable patient from ED to OT,while minimizing delay in resuscitation during the transfer.The two processes,Code Crimson and Red Blanket,complement each other.It would be ideal to merge the two processes into a single protocol rather than having two separate workflows.Introducing these quality improvement strategies and coor-dinated processes within the trauma framework of the hospitals/healthcare systems will help in further improving the multi-disciplinary care for the complex trauma patients requiring rapid and definitive haemorrhage control.展开更多
基金supported by grants from the National Natural Science Foundation of China (22178339)2023 Innovation-driven Development Special Foundation of Guangxi(AA23023021)the Hundred Talents Program (A) of the Chinese Academy of Sciences
文摘Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM's higher concentrations of metal components,particularly Fe_(2)O_(3)and rare earth elements(REEs),render RM promising for catalytic application.Hence,this work showed an efficient high-speed RM to catalyze electrocatalytic nitrate-to-ammonia reduction reaction(NARR).RM calcined at 500℃(RM-500)exhibited excellent catalytic performance.Faradaic efficiency of ammonia(FENH_(3))in an electrolyte solution containing 1 mol·L^(-1)NO_(3)-achieved a maximum value of 92.3%at-0.8 V(vs.RHE).Additionally,24-h cycle testing and post-reaction PXRD and SEM indicated that the RM-500 electrocatalyst is stable during NARR.The RM-500 demonstrated a high FE of NH_(3)-to-NO_(3)-of 89.7%at 1.85 V(vs.RHE),showing great potential in the ammonia fuel cells technology and achieving the nitrogen cycle.
基金supported by the China Geological Survey Project(Nos.DD20220864 and DD20243077).
文摘Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
文摘The effects of major veins severing on morphological and physiological features of sweetgum (Liquidambar styraciflua L.) leaves were investigated by observing leaf color change and measuring leaf temperature, green/luminance (G/L) value of half-lobes, leaf stomata conductance, and water content in Yamaguchi University, Japan. The palmately veined leaves of sweetgum (Liquidambar styraciflua L.) were found more sensitive to the major vein severing than that of other species Major veins severing resulted in serious water stresses, as indicated by the persistent reddening and/or advanced reddening of local leaf, lower leaf stomatal conductance, and higher leaf temperature, etc. Severed leaf can be clearly divided into non-severed area, transitional area, and stressed area, which the three areas have different colours and temperature. The major vein barrier can also be seen clearly. The persistent reddening and advanced reddening seem consistent with the phenomenon of red crown top of some sweetgum trees and may have similar mechanism.
基金supported by the National Natural Science Foundation of China(52104133,52304227)the Natural Science Foundation of Hunan Province(2021JJ40465,2023JJ40548)the Opening Foundation of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC20KF03).
文摘To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compression and uniaxial loading–unloading tests were conducted under five saturation levels.The effect of saturation on the mechanical properties and elastic energy density was analyzed,and a method for obtaining peak energy density was proposed.The effect of saturation on the energy evolution was examined,and the energy mechanism of water in preventing rockburst was revealed.The results indicate that an increase in saturation of red sandstone decreases the input energy density,elastic energy density,dissipated energy density,peak strength and peak strain;the compaction phase of the stress–strain curve becomes shorter;the failure mode transitions from X-conjugate oblique shear to single oblique shear;the variation in the debris ejection trajectory is as follows:radiation→X-ray→oblique upward parabola→horizontal parabola→oblique downward parabola;the degree of failure intensity and fragmentation is decreased gradually.Elastic energy density is interconnected with both saturation and stress but independent of the loading path.Saturation exhibits a dual effect on the energy storage property,i.e.,increasing saturation increases the energy storage efficiency and reduces the energy storage capacity.The ratio of peak elastic energy density to peak input energy density remains constant irrespective of saturation levels.Water prevents rockburst by decreasing the energy storage capacity of surrounding rock,alleviating the stress of surrounding rock to reduce energy storage,and elevating the energy release threshold of high-energy surrounding rock.The findings of this study contribute to understanding the effect of water on rock failure from an energy perspective,as well as provide theoretical guidance for rockburst prevention by water in deep tunnels.
文摘BACKGROUND As red blood cell distribution width(RDW)and albumin have been shown to be independent predictors of mortality from various diseases,this study aimed to investigate the effect of the RDW to albumin ratio(RA)as an independent predictor of the prognosis of patients admitted to the coronary care unit(CCU).AIM To use the RDW and albumin level to predict the prognosis of patients in the CCU.METHODS Data were obtained from the Medical Information Mart Intensive Care III database.The primary outcome was 365-day all-cause mortality,whereas the secondary outcomes were 30-and 90-day all-cause mortality,hospital length of stay(LOS),and CCU LOS.Cox proportional hazards regression model,propen-sity score matching,and receiver operating characteristic curve analyses were used.RESULTS The hazard ratio(95%confidence interval)of the upper tertile(RA>4.66)was 1.62(1.29 to 2.03)when compared with the reference(RA<3.84)in 365-day all-cause mortality.This trend persisted after adjusting for demographic and clinical variables in the propensity score-matching analysis.Similar trends were observed for the secondary outcomes of hospital and CCU LOS.Receiver operating characteristic curve analysis was performed by combining the RA and sequential organ failure assessment(SOFA)scores,and the C-statistic was higher than that of the SOFA scores(0.733 vs 0.702,P<0.001).CONCLUSION RA is an independent prognostic factor in patients admitted to the CCU.RA combined with the SOFA score can improve the predictive ability of the SOFA score.However,our results should be verified in future prospective studies.
基金supported by the National Natural Science Foundation of China (Grant No.42394122)CAS Project of Stable Support for Youth Team in Basic Research Field (YSRR-018)+1 种基金the National Key R&D Program of China (2023YFC3007703)the Chinese Meridian Project, and the International Partnership Program of Chinese Academy of Sciences (183311KYSB20200003)。
文摘On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP,2019QZKK0402)Science and Technology Plan Project of Xizang Autonomous Region to Y.Q. (XZ202201ZY0030G)National Natural Science Foundation of China (32201424 to Z.Y.L.and 31872233 to Y.Q.)。
文摘Assessing the threat status of species in response to global change is critical for biodiversity monitoring and conservation efforts.However,current frameworks,even the IUCN Red List,often neglect critical factors such as genetic diversity and the impacts of climate and land-use changes,hindering effective conservation planning.To address these limitations,we developed an enhanced extinction risk assessment framework using Diploderma lizards as a model.This framework incorporates long-term field surveys,environmental data,and land-use information to predict distributional changes for 10 recently described Diploderma species on the Qinghai-Xizang Plateau,which hold ecological significance but remain underassessed in conservation assessment.By integrating the distribution data and genetically inferred effective population sizes(Ne),we conducted scenario analyses and used a rank-sum approach to calculate Risk ranking scores(RRS)for each species.This approach revealed significant discrepancies with the IUCN Red List assessments.Notably,D.yangi and D.qilin were identified as facing the highest extinction risk.Furthermore,D.vela,D.batangense,D.flaviceps,D.dymondi,D.yulongense,and D.laeviventre,currently classified as“Least Concern”,were found to warrant reclassification as“Vulnerable”due to considerable threat from projected range contractions.Exploring the relationship between morphology and RRS revealed that traits such as snout-vent length and relative tail length could serve as potential predictors of extinction risk,offering preliminary metrics for assessing species vulnerability when comprehensive data are unavailable.This study enhances the precision of extinction risk assessment frameworks and demonstrates their capacity to refine and update risk assessments,especially for lesser-known taxa.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3707900)the National Natural Science Foundation of China(Grant Nos.42030710 and 42472337).
文摘The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechanical properties and structural behavior of contaminated soils during carbonation can vary significantly due to differences in soil composition.This study examines the potential application and underlying mechanisms of reactive MgO carbonation in improving the mechanical properties of Pb-contaminated red clay.The findings demonstrate that Pb-contaminated red clay transitions from a plastic to a brittle state following reactive MgO carbonation.After 1 h of treatment,the strength of the red clay exceeded 3 MPa,even at high Pb^(2+)concentrations.The deformation modulus to unconfined compressive strength(UCS)ratio was calculated to be 37.761,with the failure strain primarily ranging from 1.5%to 4.0%.A strength prediction model for the reactive MgO-stabilized Pb-contaminated red clay was proposed,which showed good predictive accuracy.Furthermore,reactive MgO carbonation significantly reduced the Pb leaching concentration in the high-level Pb-contaminated soil to below 0.1 mg/L.Microscopic analysis revealed that an optimal amount of hydrated magnesium carbonates(HMCs)formed a stable and compact structure with the soil particles.However,long-term carbonation causes red clay particles to become sandy,and excessive HMCs can harm the soil structure.Therefore,to maximize the strength improvement while avoiding structural damage,the carbonation time should be controlled to 1 h.
文摘Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts.
基金supported by The National Natural Science Foundation of China(Grant Nos.12272411 and 42007259).
文摘Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),"Qinglan Project"Young and Middle-aged Academic Leaders Program of Jiangsu Province,and the National Natural Science Foundation of China(General Program).
文摘The enhancement of the intensity of red upconversion(UC)emission has significant implications for biological applications.In KZnF_(3):Yb^(3+),Er^(3+)which inherently produces high-purity red emission,the introduction of Fe^(3+)markedly improves the UC intensity by a factor of 13.The mechanism behind the enhanced UC red luminescence is deduced to originate from the Yb^(3+)-Fe^(3+)dimer,as determined by first principle calculation and analysis of UC luminescence properties.The thermometry performance,based on splitting peaks of red emission,demonstrated enhanced temperature sensitivity at lower ranges.Exploring the photothermal properties,it was observed that temperature exhibited a linear correlation with pump power under a 980 nm laser,achieving levels up to 48℃.This temperature range is ideal for applications in mild photothermal therapy(MPTT).This work elucidates the material’s potential in advanced biological applications,merging optical thermometry and photothermics,indicating its multifunctional utility.
基金Supported by the National Natural Science Foundation of China,No.81302124.
文摘BACKGROUND Red blood cell distribution width(RDW)is associated with the development and progression of various diseases.AIM To explore the association between pretreatment RDW and short-term outcomes after laparoscopic pancreatoduodenectomy(LPD).METHODS A total of 804 consecutive patients who underwent LPD at our hospital between March 2017 and November 2021 were retrospectively analyzed.Correlations between pretreatment RDW and clinicopathological characteristics and short-term outcomes were investigated.RESULTS Patients with higher pretreatment RDW were older,had higher Eastern Cooperative Oncology Group scores and were associated with poorer short-term outcomes than those with normal RDW.High pretreatment RDW was an independent risk factor for postoperative complications(POCs)(hazard ratio=2.973,95%confidence interval:2.032-4.350,P<0.001)and severe POCs of grade IIIa or higher(hazard ratio=3.138,95%confidence interval:2.042-4.824,P<0.001)based on the Clavien-Dino classification system.Subgroup analysis showed that high pretreatment RDW was an independent risk factor for Clavien-Dino classi-fication grade IIIb or higher POCs,a comprehensive complication index score≥26.2,severe postoperative pancreatic fistula,severe bile leakage and severe hemorrhage.High pretreatment RDW was positively associated with the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and was negatively associated with albumin and the prognostic nutritional index.CONCLUSION Pretreatment RDW was a special parameter for patients who underwent LPD.It was associated with malnutrition,severe inflammatory status and poorer short-term outcomes.RDW could be a surrogate marker for nutritional and inflammatory status in identifying patients who were at high risk of developing POCs after LPD.
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
文摘The care of a patient involved in major trauma with exsanguinating haemorrhage is time-critical to achieve definitive haemorrhage control,and it requires coordinated multidisciplinary care.During initial resuscitation of a patient in the emergency department(ED),Code Crimson activation facilitates rapid decisionmaking by multi-disciplinary specialists for definitive haemorrhage control in operating theatre(OT)and/or interventional radiology(IR)suite.Once this decision has been made,there may still be various factors that lead to delay in transporting the patient from ED to OT/IR.Red Blanket protocol identifies and addresses these factors and processes which cause delay,and aims to facilitate rapid and safe transport of the haemodynamically unstable patient from ED to OT,while minimizing delay in resuscitation during the transfer.The two processes,Code Crimson and Red Blanket,complement each other.It would be ideal to merge the two processes into a single protocol rather than having two separate workflows.Introducing these quality improvement strategies and coor-dinated processes within the trauma framework of the hospitals/healthcare systems will help in further improving the multi-disciplinary care for the complex trauma patients requiring rapid and definitive haemorrhage control.