期刊文献+
共找到256篇文章
< 1 2 13 >
每页显示 20 50 100
Application of feedforward and recurrent neural networks for model-based control systems
1
作者 Marek Krok Wojciech P.Hunek +2 位作者 Szymon Mielczarek Filip Buchwald Adam Kolender 《Control Theory and Technology》 2025年第1期91-104,共14页
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l... In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application. 展开更多
关键词 Predictive control Linear-quadratic control Inverse problems Feedforward network recurrent neural network OPTIMIZATION
原文传递
Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks
2
作者 Sahbi Boubaker Adel Mellit +3 位作者 Nejib Ghazouani Walid Meskine Mohamed Benghanem Habib Kraiem 《Computer Modeling in Engineering & Sciences》 2025年第5期2237-2259,共23页
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d... Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations. 展开更多
关键词 MICROGRID electric vehicles charging station forecasting deep recurrent neural networks energy management system
在线阅读 下载PDF
Hedging Against Material Uncertainty via Chance-Constrained Recurrent Neural Networks:A Continuous Pharmaceutical Manufacturing Case Study
3
作者 Qingbo Meng I.David L.Bogle Vassilis M.Charitopoulos 《Engineering》 2025年第9期129-141,共13页
In the pharmaceutical industry,model-based prediction is a crucial stage in process development that allows pharmaceutical companies to simulate different scenarios toward improving process efficiency,reducing costs,a... In the pharmaceutical industry,model-based prediction is a crucial stage in process development that allows pharmaceutical companies to simulate different scenarios toward improving process efficiency,reducing costs,and enhancing product quality.Nevertheless,ensuring the quality of formulated pharmaceutical products through the management of raw material variations has always been a challenging task.In this work,data-driven chance-constrained recurrent neural networks(CCRNNs)are developed to address the issue arising from raw material uncertainty.Our goal is to explore how,by proactively incorporating uncertainty into the model training process,more accurate predictions and enhanced robustness can be realized.The proposed approach is tested on a fluid bed dryer(FBD)from a continuous pharmaceutical manufacturing pilot plant.The results demonstrate that CCRNN models offer more robust and accurate predictions for the critical quality attribute(CQA)-in this case,moisture content-when material variations occur,compared with conventional recurrent neural network-based models. 展开更多
关键词 Data-driven chance constraints recurrent neural networks Managing material uncertainty Continuous pharmaceutical manufacturing Smart manufacturing
在线阅读 下载PDF
Smelting stage recognition for converter steelmaking based on the convolutional recurrent neural network
4
作者 Zhangjie Dai Ye Sun +2 位作者 Wei Liu Shufeng Yang Jingshe Li 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2152-2163,共12页
The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stag... The converter steelmaking process represents a pivotal aspect of steel metallurgical production,with the characteristics of the flame at the furnace mouth serving as an indirect indicator of the internal smelting stage.Effectively identifying and predicting the smelt-ing stage poses a significant challenge within industrial production.Traditional image-based methodologies,which rely on a single static flame image as input,demonstrate low recognition accuracy and inadequately extract the dynamic changes in smelting stage.To address this issue,the present study introduces an innovative recognition model that preprocesses flame video sequences from the furnace mouth and then employs a convolutional recurrent neural network(CRNN)to extract spatiotemporal features and derive recognition outputs.Ad-ditionally,we adopt feature layer visualization techniques to verify the model’s effectiveness and further enhance model performance by integrating the Bayesian optimization algorithm.The results indicate that the ResNet18 with convolutional block attention module(CBAM)in the convolutional layer demonstrates superior image feature extraction capabilities,achieving an accuracy of 90.70%and an area under the curve of 98.05%.The constructed Bayesian optimization-CRNN(BO-CRNN)model exhibits a significant improvement in comprehensive performance,with an accuracy of 97.01%and an area under the curve of 99.85%.Furthermore,statistics on the model’s average recognition time,computational complexity,and parameter quantity(Average recognition time:5.49 ms,floating-point opera-tions per second:18260.21 M(1 M=1×10^(6)),parameters:11.58 M)demonstrate superior performance.Through extensive repeated ex-periments on real-world datasets,the proposed CRNN model is capable of rapidly and accurately identifying smelting stages,offering a novel approach for converter smelting endpoint control. 展开更多
关键词 intelligent steelmaking flame state recognition deep learning convolutional recurrent neural network
在线阅读 下载PDF
Exponential stability and existence of periodic solutions for a class of recurrent neural networks with delays 被引量:1
5
作者 戴志娟 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期286-293,共8页
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ... Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications. 展开更多
关键词 recurrent neural network global exponential stability periodic solution delay HOMEOMORPHISM Lyapunov function
在线阅读 下载PDF
Fake News Classification Using a Fuzzy Convolutional Recurrent Neural Network 被引量:2
6
作者 Dheeraj Kumar Dixit Amit Bhagat Dharmendra Dangi 《Computers, Materials & Continua》 SCIE EI 2022年第6期5733-5750,共18页
In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,th... In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model. 展开更多
关键词 Fake news detection text classification convolution recurrent neural network fuzzy convolutional recurrent neural networks
在线阅读 下载PDF
Minimal Gated Unit for Recurrent Neural Networks 被引量:39
7
作者 Guo-Bing Zhou Jianxin Wu +1 位作者 Chen-Lin Zhang Zhi-Hua Zhou 《International Journal of Automation and computing》 EI CSCD 2016年第3期226-234,共9页
Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many comp... Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically. 展开更多
关键词 recurrent neural network minimal gated unit (MGU) gated unit gate recurrent unit (GRU) long short-term memory(LSTM) deep learning.
原文传递
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:24
8
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron recurrent neural networks Long short-term memory Gated recurrent unit
在线阅读 下载PDF
Remaining Useful Life Prediction for a Roller in a Hot Strip Mill Based on Deep Recurrent Neural Networks 被引量:11
9
作者 Ruihua Jiao Kaixiang Peng Jie Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1345-1354,共10页
Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv... Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods. 展开更多
关键词 Hot strip mill prognostics and health management(PHM) recurrent neural network(RNN) remaining useful life(RUL) roller management.
在线阅读 下载PDF
Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model 被引量:8
10
作者 Jun Ling Gao-Jun Liu +2 位作者 Jia-Liang Li Xiao-Cheng Shen Dong-Dong You 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期13-23,共11页
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ... Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified. 展开更多
关键词 Fault prediction Nuclear power machinery Steam turbine recurrent neural network Probabilistic principal component analysis Bayesian confidence
在线阅读 下载PDF
Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network 被引量:7
11
作者 马千里 郑启伦 +2 位作者 彭宏 钟谭卫 覃姜维 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期536-542,共7页
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structu... This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by coevolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series. 展开更多
关键词 chaotic time series multi-step-prediction co-evolutionary strategy recurrent neural networks
原文传递
A novel recurrent neural network forecasting model for power intelligence center 被引量:6
12
作者 刘吉成 牛东晓 《Journal of Central South University of Technology》 EI 2008年第5期726-732,共7页
In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was... In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision. 展开更多
关键词 load forecasting uncertain element power intelligence center unascertained mathematics recurrent neural network
在线阅读 下载PDF
DeepPOSE:Detecting GPS spoofing attack via deep recurrent neural network 被引量:6
13
作者 Peng Jiang Hongyi Wu Chunsheng Xin 《Digital Communications and Networks》 SCIE CSCD 2022年第5期791-803,共13页
The Global Positioning System(GPS)has become a foundation for most location-based services and navigation systems,such as autonomous vehicles,drones,ships,and wearable devices.However,it is a challenge to verify if th... The Global Positioning System(GPS)has become a foundation for most location-based services and navigation systems,such as autonomous vehicles,drones,ships,and wearable devices.However,it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools.Pervasive tools,such as Fake GPS,Lockito,and software-defined radio,enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected.Furthermore,it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors.To this end,we propose DeepPOSE,a deep learning model,to address the noise introduced in sensor readings and detect GPS spoofing attacks on mobile platforms.Our design uses a convolutional and recurrent neural network to reduce the noise,to recover a vehicle's real-time trajectory from multiple sensor inputs.We further propose a novel scheme to map the constructed trajectory from sensor readings onto the Google map,to smartly eliminate the accumulation of errors on the trajectory estimation.The reconstructed trajectory from sensors is then used to detect the GPS spoofing attack.Compared with the existing method,the proposed approach demonstrates a significantly higher degree of accuracy for detecting GPS spoofing attacks. 展开更多
关键词 GPS spoofing attack Position estimation recurrent neural network
在线阅读 下载PDF
Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction 被引量:3
14
作者 Youdao Wang Yifan Zhao Sri Addepalli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期32-51,共20页
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been... The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance. 展开更多
关键词 Remaining useful life prediction Deep learning recurrent neural network Long short-term memory Bi-directional long short-term memory Gated recurrent unit
在线阅读 下载PDF
OTT Messages Modeling and Classification Based on Recurrent Neural Networks 被引量:3
15
作者 Guangyong Yang Jianqiu Zeng +3 位作者 Mengke Yang Yifei Wei Xiangqing Wang Zulfiqar Hussain Pathan 《Computers, Materials & Continua》 SCIE EI 2020年第5期769-785,共17页
A vast amount of information has been produced in recent years,which brings a huge challenge to information management.The better usage of big data is of important theoretical and practical significance for effectivel... A vast amount of information has been produced in recent years,which brings a huge challenge to information management.The better usage of big data is of important theoretical and practical significance for effectively addressing and managing messages.In this paper,we propose a nine-rectangle-grid information model according to the information value and privacy,and then present information use policies based on the rough set theory.Recurrent neural networks were employed to classify OTT messages.The content of user interest is effectively incorporated into the classification process during the annotation of OTT messages,ending with a reliable trained classification model.Experimental results showed that the proposed method yielded an accurate classification performance and hence can be used for effective distribution and control of OTT messages. 展开更多
关键词 OTT messages information privacy nine-rectangle-grid hierarchical classification recurrent neural networks
在线阅读 下载PDF
Recurrent neural network for vehicle dead-reckoning 被引量:2
16
作者 Ma Haibo Zhang Liguo Chen Yangzhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期351-355,共5页
For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteri... For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteristics. Compared with the well known, extended Kalman filter (EKF), a recurrent neural network is proposed for the solution, which not only improves the location precision and the adaptive ability of resisting disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear system model. To test the performances of the recurrent neural network, these two methods are used to estimate the state of the vehicle's DR navigation system. Simulation results show that the recurrent neural network is superior to the EKF and is a more ideal filtering method for vehicle DR navigation. 展开更多
关键词 dead reckoning extended Kalman filter recurrent neural network vehicle integrated navigationsystems.
在线阅读 下载PDF
New Stability Criteria for Recurrent Neural Networks with a Time-varying Delay 被引量:2
17
作者 Hong-Bing Zeng Shen-Ping Xiao Bin Liu 《International Journal of Automation and computing》 EI 2011年第1期128-133,共6页
This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore... This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods. 展开更多
关键词 STABILITY recurrent neural networks (RNNs) time-varying delay DELAY-DEPENDENT augmented Lyapunov-Krasovskii functional.
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
18
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control recurrent neural networks Intelligent PID control.
在线阅读 下载PDF
Robust stability analysis of Takagi-Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays 被引量:1
19
作者 M.Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期1-15,共15页
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili... In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. 展开更多
关键词 recurrent neural networks linear matrix inequality Lyapunov stability time-varyingdelays TS fuzzy model
原文传递
Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks 被引量:1
20
作者 ZHANG Jian-hai ZHANG Sen-lin LIU Mei-qin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1912-1920,共9页
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t... The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results. 展开更多
关键词 Standard neural network model (SNNM) Robust exponential stability recurrent neural networks (RNNs) DISCRETE-TIME Time-delay system Linear matrix inequality (LMI)
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部