The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-...The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.展开更多
A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D...A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas.The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet,but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry.These two asymmetries are fundamental features of the reconnection process at the Earth's magnetopause.In experiment,the reconnection process is driven by a set of flux cores through coil-currentramp-up from the 'magnetosheath-side' to interact with a dipole magnetic field generated by the Dipole Research Experiment(DREX) coil on the 'magnetosphere-side'.The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth's magnetopause.A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the 'magnetosheath-side' and electron cyclotron resonance(ECR) with microwave sources on the 'magnetosphere-side',e.g.high(low)plasma density at experimental magnetosheath(dipole) side.Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms.The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.展开更多
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio...Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.展开更多
We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of ...We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.展开更多
We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel...We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport...The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.展开更多
Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition...Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition must break down in a localized region,commonly called the ‘diffusion region'.In Earth's magnetosphere,ion diffusion regions have already been observed,while electron diffusion regions have not been detected due to their small scales(of the order of a few km)(Paschmann,2008).In this paper we report,for the first time,in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth's highlatitude magnetopause.The electron diffusion region is characterized by nongyrotropic electron distribution,strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets.Also observed were multiple micro-scale flux ropes,with a scale size of about 5 c/ω_(pe)(12 km,with c/ωpe the electron inertial length),that are crucial for electron acceleration in the guide-field reconnection process(Drake et al.,2006 a).The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.展开更多
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magneti...Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.展开更多
In this paper,we analyze one reconnection event observed by the Magnetospheric Multiscale(MMS)mission at the earth’s magnetopause.In this event,the spacecraft crossed the reconnection current sheet from the magnetosp...In this paper,we analyze one reconnection event observed by the Magnetospheric Multiscale(MMS)mission at the earth’s magnetopause.In this event,the spacecraft crossed the reconnection current sheet from the magnetospheric side to the magnetosheath side,and whistler waves were observed on both the magnetospheric and magnetosheath sides.On the magnetospheric side,the whistler waves propagated quasi-parallel to the magnetic field and toward the X-line,while on the magnetosheath side they propagated almost anti-parallel to the magnetic field and away from the X-line.Associated with the enhancement of the whistler waves,we find that the fluxes of energetic electrons are concentrated around the pitch angle 90°when their energies are higher than the minimum energy that is necessary for the resonant interactions between the energetic electrons and whistler waves.This observation provides in situ observational evidence of resonant interactions between energetic electrons and whistler waves in the magnetic reconnection.展开更多
A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices.Through the investigation of ion velocity distributions at differe...A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices.Through the investigation of ion velocity distributions at different moments and locations along the separatrices,a typical distribution is found:two counter-streaming populations in the perpendicular direction,with another two populations accelerated into distinct energy levels in the parallel direction.Backward tracing of ions reveals that the counter-streaming cores are mostly composed of ions initially located at the same side of the separatrix,while the other two accelerated populations in the parallel direction are composed of ions crossing through the neutral sheet.Through analysis of energy conversion of these populations,it is found that the ion energization along the separatrix is attributable primarily to the Hall electric field,while that in the region between the two separatrices is caused primarily by the induced reconnection electric field.For the counter-streaming population,the low-energy ions that cross the separatrix twice are affected by both Hall and reconnection electric fields,while the high-energy ions that directly enter the separatrix from the unperturbed plasma are energized mainly by the Hall electric field.For the two energized populations in the parallel direction,the ions with lower-energy are accelerated mainly by the in-plane electric field and the Hall electric field on the opposite side of the separatrix,whereas the ions with higher-energy not only experience the same energization process but also are constantly accelerated by the reconnection electric field.展开更多
Generation of Hall electric field and net charge associated initial conditions of plasma density and magnetic field. with magnetic reconnection is studied under different With inclusion of the Hall effects, decoupling...Generation of Hall electric field and net charge associated initial conditions of plasma density and magnetic field. with magnetic reconnection is studied under different With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.展开更多
The jets driven by magnetic reconnection in laser-plasma interactions are investi- gated experimentally. The diagnostics in the optical and X-ray ranges provide detailed information about the jet characteristics. The ...The jets driven by magnetic reconnection in laser-plasma interactions are investi- gated experimentally. The diagnostics in the optical and X-ray ranges provide detailed information about the jet characteristics. The plasma jets perpendicular to and along the target surface are observed clearly, which is evident signatures of laser driven magnetic reconnection. The jet formation is also investigated for different experimental parameters.展开更多
A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at lar...A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10^(10)–10^(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10^(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).展开更多
We calculate the anomalous resistivity(AR)due to electrostatic waves,including possibly the lower hybrid wave and electron beam mode,around the secondary islands in the reconnection region observed by the Cluster spac...We calculate the anomalous resistivity(AR)due to electrostatic waves,including possibly the lower hybrid wave and electron beam mode,around the secondary islands in the reconnection region observed by the Cluster spacecraft.Our main findings are:AR is important on the reconnection separatrix layer but heavily suppressed at the central current sheet where B_(x)~0.Moreover,there is a highly asymmetric pattern of AR across the island along the outflow direction,with much larger AR on one side of island than on the other side.Our results may be helpful in understanding the role of AR in reconnection.展开更多
In order to investigate electron dynamics near the electron diffusion region in mag- netic reconnection process, an upgrade in the linear magnetized plasma (LMP) device is accom- plished at the University of Science...In order to investigate electron dynamics near the electron diffusion region in mag- netic reconnection process, an upgrade in the linear magnetized plasma (LMP) device is accom- plished at the University of Science and Technology of China. Radio frequency (RF) helicon discharge is used to generate a quasi-stationary plasma, and a time-dependent magnetic field is applied to the plasma, which exhibits an X-type neutral point in vacuum. A two-dimensional sophisticated mobile platform is built up, providing a high spatial resolution, below 0.5 ram, for the diagnostics.展开更多
Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar...Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.展开更多
Motivated by the need of the electron density measurement for the Keda Reconnection eXperiment(KRX)facility which is under development,an interferometer system has been designed and tested in bench.The 320 GHz solid-s...Motivated by the need of the electron density measurement for the Keda Reconnection eXperiment(KRX)facility which is under development,an interferometer system has been designed and tested in bench.The 320 GHz solid-state microwave source with 1 mm wavelength is used to fulfill the high phase difference measurement in such low temperature plasma device.The results of the bench test show that the phase difference is accurately measured.In contrast to tens of degrees of phase shift expected to be measured on the KRX,the system noise(~1°)is low enough for the KRX diagnostics.In order to optimize the system for better performance,we utilize the Terasense sub-THz imaging system to adjust alignment.The interferometer system has also been calibrated via changing of the optical path length controlled by the piezo inertial motor.Simultaneously,high density polyethylene thin film is introduced successfully to change a tiny phase difference and test the sensitivity of the interferometer system.展开更多
One of the most puzzling problems in astrophysics is to understand the anomalous resistivity in collisionless magnetic reconnection that is believed extensively to be responsible for the energy re- lease in various er...One of the most puzzling problems in astrophysics is to understand the anomalous resistivity in collisionless magnetic reconnection that is believed extensively to be responsible for the energy re- lease in various eruptive phenomena. The magnetic null point in the reconnecting current sheet, acting as a scattering center, can lead to chaotic motions of particles in the current sheet, which is one of the possible mechanisms for anomalous resistivity and is called chaos-induced resistivity. In many interest- ing cases, however, instead of the magnetic null point, there is a nonzero magnetic field perpendicular to the merging field lines, usually called the guide field, whose effect on chaos-induced resistivity has been an open problem. By use of the test particle simulation method and statistical analysis, we investigate chaos-induced resistivity in the presence of a constant guide field. The characteristics of particle motion in the reconnecting region, in particular, the chaotic behavior of particle orbits and evolving statistical features, are analyzed. The results show that as the guide field increases, the radius of the chaos region increases and the Lyapunov index decreases. However, the effective collision frequency, and hence the chaos-induced resistivity, reach their peak values when the guide field approaches half of the character- istic strength of the reconnection magnetic field. The presence of a guide field can significantly influence the chaos of the particle orbits and hence the chaos-induced resistivity in the reconnection sheet, which decides the collisionless reconnection rate. The present result is helpful for us to understand the micro- physics of anomalous resistivity in collisionless reconnection with a guide field.展开更多
In this paper, a new method of topological cleanup for quadrilateral mesh is presented. The method first selects a patch of mesh around an irregular node. It then seeks the best connection of the selected patch accord...In this paper, a new method of topological cleanup for quadrilateral mesh is presented. The method first selects a patch of mesh around an irregular node. It then seeks the best connection of the selected patch according to its irregular valence using a new topological operation: small polygon reconnection (SPR). By replacing the original patch with an optimal one that has less irregular valence, mesh quality can be improved. Three applications based on the proposed approach are enumerated: (1) improving the quality of a quadrilateral mesh, (2) converting a triangular mesh to a quadrilateral one, and (3) adapting a triangle generator to a quadrilateral one. The presented method is highly effective in all three applications.展开更多
The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics(MHD). It is well known that a decrease in magnetic energy is proportion...The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics(MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12375236 and 12135009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050100 and XDA25010100).
文摘The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.
基金supported by the NSFC under Grant Nos.11261140326,11275034,51577043,11505040, 61402138HIT.NSRIF under Grant No.2017009the Natural Science Foundation of Heilongjiang Province(No. E201452)
文摘A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas.The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet,but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry.These two asymmetries are fundamental features of the reconnection process at the Earth's magnetopause.In experiment,the reconnection process is driven by a set of flux cores through coil-currentramp-up from the 'magnetosheath-side' to interact with a dipole magnetic field generated by the Dipole Research Experiment(DREX) coil on the 'magnetosphere-side'.The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth's magnetopause.A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the 'magnetosheath-side' and electron cyclotron resonance(ECR) with microwave sources on the 'magnetosphere-side',e.g.high(low)plasma density at experimental magnetosheath(dipole) side.Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms.The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.
基金Project supported by the National Natural Science of China(Grant Nos.41527804 and 41774169)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJSSW-DQC010).
文摘Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.
基金Supported by the National Natural Science Foundation of China under Grant Nos G200078405, 40336053 and 40274052, and the International Collaboration Research Team Program of the Chinese Academy of Sciences.
文摘We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41331067 and 41527804the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant No QYZDJ-SSW-DQC010the Fundamental Research Funds for the Central Universities
文摘We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.
基金supported by the National Nature Science Foundation of China (Grant NSFC41374179)supported by NASA (NNX16AJ83G)
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.
基金supported by National Natural Science Foundation of China(41421003 and 41627805)
文摘Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition must break down in a localized region,commonly called the ‘diffusion region'.In Earth's magnetosphere,ion diffusion regions have already been observed,while electron diffusion regions have not been detected due to their small scales(of the order of a few km)(Paschmann,2008).In this paper we report,for the first time,in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth's highlatitude magnetopause.The electron diffusion region is characterized by nongyrotropic electron distribution,strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets.Also observed were multiple micro-scale flux ropes,with a scale size of about 5 c/ω_(pe)(12 km,with c/ωpe the electron inertial length),that are crucial for electron acceleration in the guide-field reconnection process(Drake et al.,2006 a).The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.
基金Project supported by the National Natural Science Foundation of China(Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.
基金supported by NSFC grants 41527804 and 41774169Key Research Program of Frontier Sciences, CAS(QYZDJ-SSW-DQC010)
文摘In this paper,we analyze one reconnection event observed by the Magnetospheric Multiscale(MMS)mission at the earth’s magnetopause.In this event,the spacecraft crossed the reconnection current sheet from the magnetospheric side to the magnetosheath side,and whistler waves were observed on both the magnetospheric and magnetosheath sides.On the magnetospheric side,the whistler waves propagated quasi-parallel to the magnetic field and toward the X-line,while on the magnetosheath side they propagated almost anti-parallel to the magnetic field and away from the X-line.Associated with the enhancement of the whistler waves,we find that the fluxes of energetic electrons are concentrated around the pitch angle 90°when their energies are higher than the minimum energy that is necessary for the resonant interactions between the energetic electrons and whistler waves.This observation provides in situ observational evidence of resonant interactions between energetic electrons and whistler waves in the magnetic reconnection.
基金supported by the NSFC grants 41821003 and 41974192,by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)by the pre-research projects on Civil Aerospace Technologies No.D020103 funded by China’s National Space Administration(CNSA).
文摘A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices.Through the investigation of ion velocity distributions at different moments and locations along the separatrices,a typical distribution is found:two counter-streaming populations in the perpendicular direction,with another two populations accelerated into distinct energy levels in the parallel direction.Backward tracing of ions reveals that the counter-streaming cores are mostly composed of ions initially located at the same side of the separatrix,while the other two accelerated populations in the parallel direction are composed of ions crossing through the neutral sheet.Through analysis of energy conversion of these populations,it is found that the ion energization along the separatrix is attributable primarily to the Hall electric field,while that in the region between the two separatrices is caused primarily by the induced reconnection electric field.For the counter-streaming population,the low-energy ions that cross the separatrix twice are affected by both Hall and reconnection electric fields,while the high-energy ions that directly enter the separatrix from the unperturbed plasma are energized mainly by the Hall electric field.For the two energized populations in the parallel direction,the ions with lower-energy are accelerated mainly by the in-plane electric field and the Hall electric field on the opposite side of the separatrix,whereas the ions with higher-energy not only experience the same energization process but also are constantly accelerated by the reconnection electric field.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40536030 and 40474058.
文摘Generation of Hall electric field and net charge associated initial conditions of plasma density and magnetic field. with magnetic reconnection is studied under different With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.
基金supported by National Natural Science Foundation of China (Nos.10925421,10734130,10735050)National Basic Research Program of China (973 Program) (No.2007CB815103)
文摘The jets driven by magnetic reconnection in laser-plasma interactions are investi- gated experimentally. The diagnostics in the optical and X-ray ranges provide detailed information about the jet characteristics. The plasma jets perpendicular to and along the target surface are observed clearly, which is evident signatures of laser driven magnetic reconnection. The jet formation is also investigated for different experimental parameters.
基金supported by the strategic priority research program of CAS (XDA17040507, XDA15010900)the national basic research program of China (2013CBA01503)+5 种基金the key program of NSFC (11333007)joint funds of NSFC(U1631130)frontier science key programs of CAS (QYZDJ-SSWSLH012)the program for innovation team of Yunnan Provincethe program for Guangdong introducing Innovative and entrepreneurial teams (2016ZT06D211)the special program for applied research on super computation of the NSFC-Guangdong joint fund (second phase) under No.U1501501
文摘A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10^(10)–10^(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10^(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).
基金Supported by the National Natural Science Foundation of China under Grant Nos 41004060,40890163 and 41174147the Specialized Research Fund for State Key Laboratories,and Scientific Research Program of Education Department of Jiangxi Province under Grant No GJJ11049.
文摘We calculate the anomalous resistivity(AR)due to electrostatic waves,including possibly the lower hybrid wave and electron beam mode,around the secondary islands in the reconnection region observed by the Cluster spacecraft.Our main findings are:AR is important on the reconnection separatrix layer but heavily suppressed at the central current sheet where B_(x)~0.Moreover,there is a highly asymmetric pattern of AR across the island along the outflow direction,with much larger AR on one side of island than on the other side.Our results may be helpful in understanding the role of AR in reconnection.
基金supported by National Natural Science Foundation of China (Nos. 10303003, 40390155, 10605025) and Knowledge Innovation Program of the Chinese Academy of Sciences (No. kjcx-yw-n28)
文摘In order to investigate electron dynamics near the electron diffusion region in mag- netic reconnection process, an upgrade in the linear magnetized plasma (LMP) device is accom- plished at the University of Science and Technology of China. Radio frequency (RF) helicon discharge is used to generate a quasi-stationary plasma, and a time-dependent magnetic field is applied to the plasma, which exhibits an X-type neutral point in vacuum. A two-dimensional sophisticated mobile platform is built up, providing a high spatial resolution, below 0.5 ram, for the diagnostics.
基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000).
文摘Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.
基金National Natural Science Foundation of China(No.11975231)。
文摘Motivated by the need of the electron density measurement for the Keda Reconnection eXperiment(KRX)facility which is under development,an interferometer system has been designed and tested in bench.The 320 GHz solid-state microwave source with 1 mm wavelength is used to fulfill the high phase difference measurement in such low temperature plasma device.The results of the bench test show that the phase difference is accurately measured.In contrast to tens of degrees of phase shift expected to be measured on the KRX,the system noise(~1°)is low enough for the KRX diagnostics.In order to optimize the system for better performance,we utilize the Terasense sub-THz imaging system to adjust alignment.The interferometer system has also been calibrated via changing of the optical path length controlled by the piezo inertial motor.Simultaneously,high density polyethylene thin film is introduced successfully to change a tiny phase difference and test the sensitivity of the interferometer system.
基金DJW and MS was supported by the National Natural Science Foundation of China(NSFC,Grant Nos.41531071 and 11373070)LC was supported by the NSFC(Grant No.41304136)+1 种基金the Key Laboratory of Solar Activity at National Astronomical Observatories(Grant KLSA 201502)PFC was supported by the NSFC(Grant Nos.11025314 and 11533005)
文摘One of the most puzzling problems in astrophysics is to understand the anomalous resistivity in collisionless magnetic reconnection that is believed extensively to be responsible for the energy re- lease in various eruptive phenomena. The magnetic null point in the reconnecting current sheet, acting as a scattering center, can lead to chaotic motions of particles in the current sheet, which is one of the possible mechanisms for anomalous resistivity and is called chaos-induced resistivity. In many interest- ing cases, however, instead of the magnetic null point, there is a nonzero magnetic field perpendicular to the merging field lines, usually called the guide field, whose effect on chaos-induced resistivity has been an open problem. By use of the test particle simulation method and statistical analysis, we investigate chaos-induced resistivity in the presence of a constant guide field. The characteristics of particle motion in the reconnecting region, in particular, the chaotic behavior of particle orbits and evolving statistical features, are analyzed. The results show that as the guide field increases, the radius of the chaos region increases and the Lyapunov index decreases. However, the effective collision frequency, and hence the chaos-induced resistivity, reach their peak values when the guide field approaches half of the character- istic strength of the reconnection magnetic field. The presence of a guide field can significantly influence the chaos of the particle orbits and hence the chaos-induced resistivity in the reconnection sheet, which decides the collisionless reconnection rate. The present result is helpful for us to understand the micro- physics of anomalous resistivity in collisionless reconnection with a guide field.
基金supported by the National Natural Science Foundation of China (10972006, 11172004)National Basic Research Program of China (2010CB832701)
文摘In this paper, a new method of topological cleanup for quadrilateral mesh is presented. The method first selects a patch of mesh around an irregular node. It then seeks the best connection of the selected patch according to its irregular valence using a new topological operation: small polygon reconnection (SPR). By replacing the original patch with an optimal one that has less irregular valence, mesh quality can be improved. Three applications based on the proposed approach are enumerated: (1) improving the quality of a quadrilateral mesh, (2) converting a triangular mesh to a quadrilateral one, and (3) adapting a triangle generator to a quadrilateral one. The presented method is highly effective in all three applications.
基金supported by the Fundamental Research Fund for Chinese Central UniversitiesNational Natural Science Foundation of China under Grant No. 41474123the ITER-CN under Grant Nos. 2013GB104004 and 2013GB111004
文摘The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics(MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.