The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh...The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.展开更多
The reachability of a strongly connected network may be destroyed after link damage.Since many networks are directed or equivalent directed,connected by directed links with the potential for reversal. Therefore the re...The reachability of a strongly connected network may be destroyed after link damage.Since many networks are directed or equivalent directed,connected by directed links with the potential for reversal. Therefore the reachability can be restored by reversing the direction of links.[1]has studied this matter under unlimited resources(transmitter and receiver)condition.In this paper the reconnectability of a net- work with limited number of receivers and transmitters is discussed.Also a linear time algorithm is given to find a reconnected reversal for limited receivers and transmitters.展开更多
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-...The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.展开更多
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.展开更多
The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol...The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.展开更多
Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar...Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup...Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.展开更多
The Space Plasma Environment Research Facility(SPERF)for ground simulation of the space plasma environment is a key component of the Space Environment Simulation Research Infrastructure(SESRI),a major national science...The Space Plasma Environment Research Facility(SPERF)for ground simulation of the space plasma environment is a key component of the Space Environment Simulation Research Infrastructure(SESRI),a major national science and technology infrastructure for fundamental research.It is designed to investigate outstanding issues in the space plasma environment,such as energetic particle acceleration,transport,and interaction with electromagnetic waves,as well as magnetic reconnection processes,in magnetospheric plasmas.The Tail-Research EXperiment(TREX)is part of the SPERF for laboratory studies of space physics relevant to magnetic reconnection,dipolarization and hydromagnetic wave excitation in the magnetotail.SPERFTREX is designed to carry out three types of experiments:the tail plasmoid for magnetic reconnection,dipolarization front formation,and magnetohydrodynamic waves excited by highspeed plasma jets.In this paper,the scientific goals and three scenarios of SPERF-TREX for typical processes in space plasmas are presented,and experimental plans for SPERF-TREX are also reviewed,together with the plasma sources applied to generate the plasma with the desired parameters and various magnetic configurations.展开更多
Magnetic reconnection processes and their impact on planetary magnetospheric dynamics exhibit significant differences due to differences in upstream solar wind conditions and internal planetary environments.Current un...Magnetic reconnection processes and their impact on planetary magnetospheric dynamics exhibit significant differences due to differences in upstream solar wind conditions and internal planetary environments.Current understanding of reconnection phenomena at Mercury is rooted in the MESSENGER mission.However,direct detection of reconnection remains rare.Here,we aim to assess the limitations of MESSENGER in detecting reconnection in Mercury’s space and to discuss key issues of reconnection that will be addressed by BepiColombo,including the dynamics of magnetic flux ropes,particle acceleration,density asymmetric reconnection,IMF-driven near-tail structures,and potential modes of magnetospheric convection.展开更多
Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features...Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.展开更多
A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of part...A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of particle-in-cell simulations in two-dimensional(2D)and three-dimensional(3D)systems.Our result indicates that in the 2D simulation,energy conversion in the SR is dominated by parallel components,with the main influencing factor being the parallel electric field,which is not consistent with the observation.However,a case that is similar to the observation is found in the 3D simulation,suggesting that the observation result may be attributed to the 3D characteristics.Our findings provide a potential explanation for the satellite observation.展开更多
We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolut...We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.展开更多
Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that thes...Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.展开更多
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which ...The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which the energy bursts and the main mode no longer dominates when the separation between two rational surfaces is relatively large in the medium range.The development of higher m and n modes is facilitated by a relatively large separation between two rational surfaces,a small q_(min)(the minimum value of the safety factor),or low resistivity.The relationships between the higher m and n mode development,explosive reconnection rate,and position exchange of 3/1 islands are summarized for the first time.Separation plays a more important role than q_(min)in enhancing the development of higher m and n modes.At a relatively large separation,the good development of higher m and n modes greatly reduces the reconnection rate and suppresses the development of the main mode,resulting in the main mode not being able to develop sufficiently large to generate the position changes of 3/1 islands.展开更多
We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of ...We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.展开更多
In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its d...In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south.Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model(RCM) in the global model.We then focus on the following four aspects of the magnetosphere's response: the magnetosphere's density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change.We find that(1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space.Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause;(2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations;(3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south.SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.展开更多
A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D...A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas.The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet,but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry.These two asymmetries are fundamental features of the reconnection process at the Earth's magnetopause.In experiment,the reconnection process is driven by a set of flux cores through coil-currentramp-up from the 'magnetosheath-side' to interact with a dipole magnetic field generated by the Dipole Research Experiment(DREX) coil on the 'magnetosphere-side'.The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth's magnetopause.A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the 'magnetosheath-side' and electron cyclotron resonance(ECR) with microwave sources on the 'magnetosphere-side',e.g.high(low)plasma density at experimental magnetosheath(dipole) side.Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms.The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.展开更多
We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel...We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.展开更多
基金the National Natural Science Founda-tion of China(NSFC,Grant No.42174181)and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDJ-SSW-DQC010).
文摘The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.
文摘The reachability of a strongly connected network may be destroyed after link damage.Since many networks are directed or equivalent directed,connected by directed links with the potential for reversal. Therefore the reachability can be restored by reversing the direction of links.[1]has studied this matter under unlimited resources(transmitter and receiver)condition.In this paper the reconnectability of a net- work with limited number of receivers and transmitters is discussed.Also a linear time algorithm is given to find a reconnected reversal for limited receivers and transmitters.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375236 and 12135009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050100 and XDA25010100).
文摘The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.
基金supported by National Natural Science Foundation of China(No.11975038)the National Key Research and Development Program of China(No.2022YFA1604600)。
文摘The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000).
文摘Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
基金Project supported by the National Key R&D Program of China (Grant Nos.2022YFA1603200 and 2022YFA1603203)the National Natural Science Foundation of China (Grant Nos.12075030,12135001,12175018,and 12325305)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25030700)the Research Grants Council of Hong (Grant No.14307118)the Youth Interdisciplinary Team (Grant No.JCTD-2022-05)supported by the China Postdoctoral International Exchange Program。
文摘Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.
基金supported by the State Commission of Development and Reform of ChinaNational Natural Science Foundation of China(Nos.42261134533,11261140326,11405038)。
文摘The Space Plasma Environment Research Facility(SPERF)for ground simulation of the space plasma environment is a key component of the Space Environment Simulation Research Infrastructure(SESRI),a major national science and technology infrastructure for fundamental research.It is designed to investigate outstanding issues in the space plasma environment,such as energetic particle acceleration,transport,and interaction with electromagnetic waves,as well as magnetic reconnection processes,in magnetospheric plasmas.The Tail-Research EXperiment(TREX)is part of the SPERF for laboratory studies of space physics relevant to magnetic reconnection,dipolarization and hydromagnetic wave excitation in the magnetotail.SPERFTREX is designed to carry out three types of experiments:the tail plasmoid for magnetic reconnection,dipolarization front formation,and magnetohydrodynamic waves excited by highspeed plasma jets.In this paper,the scientific goals and three scenarios of SPERF-TREX for typical processes in space plasmas are presented,and experimental plans for SPERF-TREX are also reviewed,together with the plasma sources applied to generate the plasma with the desired parameters and various magnetic configurations.
基金supported by the National Natural Science Foundation of China(42174217).
文摘Magnetic reconnection processes and their impact on planetary magnetospheric dynamics exhibit significant differences due to differences in upstream solar wind conditions and internal planetary environments.Current understanding of reconnection phenomena at Mercury is rooted in the MESSENGER mission.However,direct detection of reconnection remains rare.Here,we aim to assess the limitations of MESSENGER in detecting reconnection in Mercury’s space and to discuss key issues of reconnection that will be addressed by BepiColombo,including the dynamics of magnetic flux ropes,particle acceleration,density asymmetric reconnection,IMF-driven near-tail structures,and potential modes of magnetospheric convection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975087,42261134533,and 42011530086)the National Magnetic Confinement Fusion Energy Research and Development Program of China(Grant No.2022YFE03190400)the Heilongjiang Touyan Innovation Team Program,China.
文摘Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.
基金The 3D simulation was carried out by the K computer at the RIKEN Advanced Institute for Computational Science through the HPCI Research project(hp140129,hp150123)supported by the National Natural Science Foundation of China under Grant Nos.42350710793,41874189 and 41821003。
文摘A recent satellite observation has revealed the presence of energy conversion in the separatrix region(SR)of magnetotail reconnection,driven by perpendicular components.We investigated this phenomenon by means of particle-in-cell simulations in two-dimensional(2D)and three-dimensional(3D)systems.Our result indicates that in the 2D simulation,energy conversion in the SR is dominated by parallel components,with the main influencing factor being the parallel electric field,which is not consistent with the observation.However,a case that is similar to the observation is found in the 3D simulation,suggesting that the observation result may be attributed to the 3D characteristics.Our findings provide a potential explanation for the satellite observation.
基金the support from the Key Research Program of the Chinese Academy of Sciences(No.ZDBSSSW-TLC00105)the National Key R&D Program of China(No.2022YFF0503200)+1 种基金National Natural Science Foundation of China(Nos.41974173 and 42274224)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2019066)。
文摘We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.
基金Z.Y.acknowledges the National Natural Science Foundation of China(Grant No.42074211).
文摘Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
基金supported by the National MCF Energy R&D Program of China(Nos.2022YFE03100000 and 2019YFE03030004)National Natural Science Foundation of China(No.11835010)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2021MA074)the National College Students’Innovation and Entrepreneurship Training Program(No.202211066017)。
文摘The CLT code was used to quantitatively study the impact of toroidal mode coupling on the explosive dynamics of the m/n=3/1 double tearing mode.The focus of this study was on explosive reconnection processes,in which the energy bursts and the main mode no longer dominates when the separation between two rational surfaces is relatively large in the medium range.The development of higher m and n modes is facilitated by a relatively large separation between two rational surfaces,a small q_(min)(the minimum value of the safety factor),or low resistivity.The relationships between the higher m and n mode development,explosive reconnection rate,and position exchange of 3/1 islands are summarized for the first time.Separation plays a more important role than q_(min)in enhancing the development of higher m and n modes.At a relatively large separation,the good development of higher m and n modes greatly reduces the reconnection rate and suppresses the development of the main mode,resulting in the main mode not being able to develop sufficiently large to generate the position changes of 3/1 islands.
基金Supported by the National Natural Science Foundation of China under Grant Nos G200078405, 40336053 and 40274052, and the International Collaboration Research Team Program of the Chinese Academy of Sciences.
文摘We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.
基金supported in part by the National Natural Science Foundation of China (grant 41574158, U 1631107, 41604141)the Jiangsu Shuangchuang Program, and the Natural Science Foundation of Jiangsu Province (Youth Fund: No.BK20160952, BK20140993)
文摘In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south.Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model(RCM) in the global model.We then focus on the following four aspects of the magnetosphere's response: the magnetosphere's density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change.We find that(1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space.Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause;(2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations;(3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south.SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.
基金supported by the NSFC under Grant Nos.11261140326,11275034,51577043,11505040, 61402138HIT.NSRIF under Grant No.2017009the Natural Science Foundation of Heilongjiang Province(No. E201452)
文摘A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas.The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet,but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry.These two asymmetries are fundamental features of the reconnection process at the Earth's magnetopause.In experiment,the reconnection process is driven by a set of flux cores through coil-currentramp-up from the 'magnetosheath-side' to interact with a dipole magnetic field generated by the Dipole Research Experiment(DREX) coil on the 'magnetosphere-side'.The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth's magnetopause.A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the 'magnetosheath-side' and electron cyclotron resonance(ECR) with microwave sources on the 'magnetosphere-side',e.g.high(low)plasma density at experimental magnetosheath(dipole) side.Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms.The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41331067 and 41527804the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant No QYZDJ-SSW-DQC010the Fundamental Research Funds for the Central Universities
文摘We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.