The reachability of a strongly connected network may be destroyed after link damage.Since many networks are directed or equivalent directed,connected by directed links with the potential for reversal. Therefore the re...The reachability of a strongly connected network may be destroyed after link damage.Since many networks are directed or equivalent directed,connected by directed links with the potential for reversal. Therefore the reachability can be restored by reversing the direction of links.[1]has studied this matter under unlimited resources(transmitter and receiver)condition.In this paper the reconnectability of a net- work with limited number of receivers and transmitters is discussed.Also a linear time algorithm is given to find a reconnected reversal for limited receivers and transmitters.展开更多
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh...The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.展开更多
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-...The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.展开更多
We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of ...We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.展开更多
In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its d...In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south.Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model(RCM) in the global model.We then focus on the following four aspects of the magnetosphere's response: the magnetosphere's density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change.We find that(1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space.Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause;(2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations;(3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south.SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.展开更多
A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D...A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas.The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet,but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry.These two asymmetries are fundamental features of the reconnection process at the Earth's magnetopause.In experiment,the reconnection process is driven by a set of flux cores through coil-currentramp-up from the 'magnetosheath-side' to interact with a dipole magnetic field generated by the Dipole Research Experiment(DREX) coil on the 'magnetosphere-side'.The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth's magnetopause.A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the 'magnetosheath-side' and electron cyclotron resonance(ECR) with microwave sources on the 'magnetosphere-side',e.g.high(low)plasma density at experimental magnetosheath(dipole) side.Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms.The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.展开更多
We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel...We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport...The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.展开更多
Magnetic flux ropes are characterized by coherently twisted magnetic field lines,which are ubiquitous in magnetized plasmas.As the core structure of various eruptive phenomena in the solar atmosphere,flux ropes hold t...Magnetic flux ropes are characterized by coherently twisted magnetic field lines,which are ubiquitous in magnetized plasmas.As the core structure of various eruptive phenomena in the solar atmosphere,flux ropes hold the key to understanding the physical mechanisms of solar eruptions,which impact the heliosphere and planetary atmospheres.The strongest disturbances in the Earth’s space environments are often associated with large-scale flux ropes from the Sun colliding with the Earth’s magnetosphere,leading to adverse,sometimes catastrophic,space-weather effects.However,it remains elusive as to how a flux rope forms and evolves toward eruption,and how it is structured and embedded in the ambient field.The present paper addresses these important questions by reviewing current understandings of coronal flux ropes from an observer’s perspective,with an emphasis on their structures and nascent evolution toward solar eruptions,as achieved by combining observations of both remote sensing and in-situ detection with modeling and simulation.This paper highlights an initiation mechanism for coronal mass ejections(CMEs)in which plasmoids in current sheets coalesce into a’seed’flux rope whose subsequent evolution into a CME is consistent with the standard model,thereby bridging the gap between microscale and macroscale dynamics.展开更多
In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local lin...In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magne...The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions.If the charged particles are non-adiabatically accelerated no more than once in a single reconnection,the temperature ratio would be preserved;on the other hand,this ratio would not be preserved if they are accelerated multiple times.Consequently,under a northward interplanetary magnetic field(IMF)condition,the reconnection in the nonlinear phase of the Kelvin-Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere,and the ion-to-electron temperature ratio is preserved inside the plasma sheet.When the direction of the IMF is southward,the reflection of electrons from the magnetic mirror point,and subsequent multiple non-adiabatic accelerations at the reconnection site,are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight.While reconnections that occur in the night-side far tail might preserve the ratio,turbulence on the boundaries of the bursty bulk flows(BBFs)could change the ratio in the far tail through the violation of the frozen-in condition of the ions.The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet,which has not been clearly understood till date.展开更多
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magneti...Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.展开更多
Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition...Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition must break down in a localized region,commonly called the ‘diffusion region'.In Earth's magnetosphere,ion diffusion regions have already been observed,while electron diffusion regions have not been detected due to their small scales(of the order of a few km)(Paschmann,2008).In this paper we report,for the first time,in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth's highlatitude magnetopause.The electron diffusion region is characterized by nongyrotropic electron distribution,strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets.Also observed were multiple micro-scale flux ropes,with a scale size of about 5 c/ω_(pe)(12 km,with c/ωpe the electron inertial length),that are crucial for electron acceleration in the guide-field reconnection process(Drake et al.,2006 a).The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.展开更多
In this paper,we analyze one reconnection event observed by the Magnetospheric Multiscale(MMS)mission at the earth’s magnetopause.In this event,the spacecraft crossed the reconnection current sheet from the magnetosp...In this paper,we analyze one reconnection event observed by the Magnetospheric Multiscale(MMS)mission at the earth’s magnetopause.In this event,the spacecraft crossed the reconnection current sheet from the magnetospheric side to the magnetosheath side,and whistler waves were observed on both the magnetospheric and magnetosheath sides.On the magnetospheric side,the whistler waves propagated quasi-parallel to the magnetic field and toward the X-line,while on the magnetosheath side they propagated almost anti-parallel to the magnetic field and away from the X-line.Associated with the enhancement of the whistler waves,we find that the fluxes of energetic electrons are concentrated around the pitch angle 90°when their energies are higher than the minimum energy that is necessary for the resonant interactions between the energetic electrons and whistler waves.This observation provides in situ observational evidence of resonant interactions between energetic electrons and whistler waves in the magnetic reconnection.展开更多
A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices.Through the investigation of ion velocity distributions at differe...A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices.Through the investigation of ion velocity distributions at different moments and locations along the separatrices,a typical distribution is found:two counter-streaming populations in the perpendicular direction,with another two populations accelerated into distinct energy levels in the parallel direction.Backward tracing of ions reveals that the counter-streaming cores are mostly composed of ions initially located at the same side of the separatrix,while the other two accelerated populations in the parallel direction are composed of ions crossing through the neutral sheet.Through analysis of energy conversion of these populations,it is found that the ion energization along the separatrix is attributable primarily to the Hall electric field,while that in the region between the two separatrices is caused primarily by the induced reconnection electric field.For the counter-streaming population,the low-energy ions that cross the separatrix twice are affected by both Hall and reconnection electric fields,while the high-energy ions that directly enter the separatrix from the unperturbed plasma are energized mainly by the Hall electric field.For the two energized populations in the parallel direction,the ions with lower-energy are accelerated mainly by the in-plane electric field and the Hall electric field on the opposite side of the separatrix,whereas the ions with higher-energy not only experience the same energization process but also are constantly accelerated by the reconnection electric field.展开更多
Fast radio bursts(FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that t...Fast radio bursts(FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodic magnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism,which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.展开更多
We perform 2.5-dimensional particle-in-cell simulations to investigate the nonlinear evolution of the lower hybrid drift instability (LHDI) in Harris current sheet. Due to the drift motion of electrons in the electr...We perform 2.5-dimensional particle-in-cell simulations to investigate the nonlinear evolution of the lower hybrid drift instability (LHDI) in Harris current sheet. Due to the drift motion of electrons in the electric field of the excited low hybrid drift (LHD) waves, the electrons accumulate at the outer layer, and therefore there is net positive charge at the inner edge of the current sheet. This redistribution of charge can create an electrostatic field along the z direction, which then modifies the motions of the electrons along the y direction by E × B drift. This effect strongly changes the structure of the current sheet.展开更多
Generation of Hall electric field and net charge associated initial conditions of plasma density and magnetic field. with magnetic reconnection is studied under different With inclusion of the Hall effects, decoupling...Generation of Hall electric field and net charge associated initial conditions of plasma density and magnetic field. with magnetic reconnection is studied under different With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.展开更多
Using high temporal resolution optical data obtained from three-wavelength all-sky imagers at Chinese Yellow River Station in the Arctic, together with the EISCAT Svalbard radar (ESR) and SuperDARN radars, we invest...Using high temporal resolution optical data obtained from three-wavelength all-sky imagers at Chinese Yellow River Station in the Arctic, together with the EISCAT Svalbard radar (ESR) and SuperDARN radars, we investigated the dayside pole- ward moving auroral forms (PMAFs) and the associated plasma features in the polar ionosphere under difibrent interplanetary magnetic field (1MF) conditions, between 0900 and 1010 UT on 22 December 2003. Simultaneous optical and ESR observations revealed that all PMAFs were clearly associated with pulsed particle precipitations. During northward IMF, particles can precipi- tate into lower altitudes and reach the ionospheric E-region, and there is a reverse convection cell associated with these PMAFs. This cell is one of the typical signatures of the dayside high-latitude (lobe) reconnection in the polar ionosphere. These results indicate that the PMAFs were associated with the high-latitude reconnection. During southward IMF, the PMAFs show larger lati- tudinal motion, indicating a longer mean lifetime, and the associated ionospheric features indicate that the PMAFs were generated by the dayside low-latitude reconnection.展开更多
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio...Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.展开更多
文摘The reachability of a strongly connected network may be destroyed after link damage.Since many networks are directed or equivalent directed,connected by directed links with the potential for reversal. Therefore the reachability can be restored by reversing the direction of links.[1]has studied this matter under unlimited resources(transmitter and receiver)condition.In this paper the reconnectability of a net- work with limited number of receivers and transmitters is discussed.Also a linear time algorithm is given to find a reconnected reversal for limited receivers and transmitters.
基金the National Natural Science Founda-tion of China(NSFC,Grant No.42174181)and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDJ-SSW-DQC010).
文摘The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375236 and 12135009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050100 and XDA25010100).
文摘The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos G200078405, 40336053 and 40274052, and the International Collaboration Research Team Program of the Chinese Academy of Sciences.
文摘We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.
基金supported in part by the National Natural Science Foundation of China (grant 41574158, U 1631107, 41604141)the Jiangsu Shuangchuang Program, and the Natural Science Foundation of Jiangsu Province (Youth Fund: No.BK20160952, BK20140993)
文摘In this paper, the Space Weather Modeling Framework(SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south.Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model(RCM) in the global model.We then focus on the following four aspects of the magnetosphere's response: the magnetosphere's density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change.We find that(1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space.Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause;(2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations;(3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south.SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.
基金supported by the NSFC under Grant Nos.11261140326,11275034,51577043,11505040, 61402138HIT.NSRIF under Grant No.2017009the Natural Science Foundation of Heilongjiang Province(No. E201452)
文摘A new ground-based expenmental device,the Space Plasma Environment Research Facility(SPERF),is being designed at Harbin Institute of Technology in China,with Asymmetric REconnection eXperiment-3 Dimensional(AREX-3D) as one of the experimental components to study the asymmetric reconnection dynamics relevant to the interaction between the interplanetary and magnetospheric plasmas.The asymmetry in the designed magnetic reconnection process not only refers to the distinct plasma parameters designed for the two upstream regions across the current sheet,but also refers to the inhomogeneity in the direction along the current sheet resulting from the designed 3D magnetic field geometry.These two asymmetries are fundamental features of the reconnection process at the Earth's magnetopause.In experiment,the reconnection process is driven by a set of flux cores through coil-currentramp-up from the 'magnetosheath-side' to interact with a dipole magnetic field generated by the Dipole Research Experiment(DREX) coil on the 'magnetosphere-side'.The AREX-3D will be able to investigate a range of important reconnection issues in 3D magnetic field geometry that is relevant to the Earth's magnetopause.A wide range of plasma parameters can be achieved through inductive plasma generation with flux cores on the 'magnetosheath-side' and electron cyclotron resonance(ECR) with microwave sources on the 'magnetosphere-side',e.g.high(low)plasma density at experimental magnetosheath(dipole) side.Different reconnection regimes and geometries can be produced by adjusting plasma parameters and coil setups as well as coil current waveforms.The three-dimensional magnetic field configurations in the SPERF relevant to the dayside magnetopause reconnection are discussed in detail.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41331067 and 41527804the Key Research Program of Frontier Sciences of Chinese Academy of Sciences under Grant No QYZDJ-SSW-DQC010the Fundamental Research Funds for the Central Universities
文摘We conduct an electron magnetohydrodynamics magnetic reconnection experiment with guide-field in our Keda linear magnetized plasma device, in which two pulsed currents with the same direction are conducted in parallel with the axial direction of the main chamber of the device using two long aluminum sticks. After approximately 5μs, an X-type magnetic field line topology is formed at the center of the chamber. With the formation of the X-type topology of magnetic field lines, we can also find the rapid increase of the current and ratio of the common flux to the private flux in this area. Additionally, a reduction in the plasma density and the plasma density concentration along one pair of separatrices can also be found.
基金supported by the National Nature Science Foundation of China (Grant NSFC41374179)supported by NASA (NNX16AJ83G)
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.
基金supported by the National Natural Science Foundation of China(Grant Nos.41761134088,41774150,and 11925302)CAS Key Research Program(Grant No.KZZD-EW-01-4)the fundamental research funds for the central universities,and the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)。
文摘Magnetic flux ropes are characterized by coherently twisted magnetic field lines,which are ubiquitous in magnetized plasmas.As the core structure of various eruptive phenomena in the solar atmosphere,flux ropes hold the key to understanding the physical mechanisms of solar eruptions,which impact the heliosphere and planetary atmospheres.The strongest disturbances in the Earth’s space environments are often associated with large-scale flux ropes from the Sun colliding with the Earth’s magnetosphere,leading to adverse,sometimes catastrophic,space-weather effects.However,it remains elusive as to how a flux rope forms and evolves toward eruption,and how it is structured and embedded in the ambient field.The present paper addresses these important questions by reviewing current understandings of coronal flux ropes from an observer’s perspective,with an emphasis on their structures and nascent evolution toward solar eruptions,as achieved by combining observations of both remote sensing and in-situ detection with modeling and simulation.This paper highlights an initiation mechanism for coronal mass ejections(CMEs)in which plasmoids in current sheets coalesce into a’seed’flux rope whose subsequent evolution into a CME is consistent with the standard model,thereby bridging the gap between microscale and macroscale dynamics.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003)the Ministry of Education Research in the Humanities and Social Sciences Planning Fund (Grant No. 12YJAZH120)
文摘In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively.
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions.If the charged particles are non-adiabatically accelerated no more than once in a single reconnection,the temperature ratio would be preserved;on the other hand,this ratio would not be preserved if they are accelerated multiple times.Consequently,under a northward interplanetary magnetic field(IMF)condition,the reconnection in the nonlinear phase of the Kelvin-Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere,and the ion-to-electron temperature ratio is preserved inside the plasma sheet.When the direction of the IMF is southward,the reflection of electrons from the magnetic mirror point,and subsequent multiple non-adiabatic accelerations at the reconnection site,are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight.While reconnections that occur in the night-side far tail might preserve the ratio,turbulence on the boundaries of the bursty bulk flows(BBFs)could change the ratio in the far tail through the violation of the frozen-in condition of the ions.The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet,which has not been clearly understood till date.
基金Project supported by the National Natural Science Foundation of China(Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.
基金supported by National Natural Science Foundation of China(41421003 and 41627805)
文摘Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition must break down in a localized region,commonly called the ‘diffusion region'.In Earth's magnetosphere,ion diffusion regions have already been observed,while electron diffusion regions have not been detected due to their small scales(of the order of a few km)(Paschmann,2008).In this paper we report,for the first time,in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth's highlatitude magnetopause.The electron diffusion region is characterized by nongyrotropic electron distribution,strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets.Also observed were multiple micro-scale flux ropes,with a scale size of about 5 c/ω_(pe)(12 km,with c/ωpe the electron inertial length),that are crucial for electron acceleration in the guide-field reconnection process(Drake et al.,2006 a).The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.
基金supported by NSFC grants 41527804 and 41774169Key Research Program of Frontier Sciences, CAS(QYZDJ-SSW-DQC010)
文摘In this paper,we analyze one reconnection event observed by the Magnetospheric Multiscale(MMS)mission at the earth’s magnetopause.In this event,the spacecraft crossed the reconnection current sheet from the magnetospheric side to the magnetosheath side,and whistler waves were observed on both the magnetospheric and magnetosheath sides.On the magnetospheric side,the whistler waves propagated quasi-parallel to the magnetic field and toward the X-line,while on the magnetosheath side they propagated almost anti-parallel to the magnetic field and away from the X-line.Associated with the enhancement of the whistler waves,we find that the fluxes of energetic electrons are concentrated around the pitch angle 90°when their energies are higher than the minimum energy that is necessary for the resonant interactions between the energetic electrons and whistler waves.This observation provides in situ observational evidence of resonant interactions between energetic electrons and whistler waves in the magnetic reconnection.
基金supported by the NSFC grants 41821003 and 41974192,by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)by the pre-research projects on Civil Aerospace Technologies No.D020103 funded by China’s National Space Administration(CNSA).
文摘A particle-in-cell simulation of symmetric reconnection with zero guide field is carried out to understand the dynamics of ions along the separatrices.Through the investigation of ion velocity distributions at different moments and locations along the separatrices,a typical distribution is found:two counter-streaming populations in the perpendicular direction,with another two populations accelerated into distinct energy levels in the parallel direction.Backward tracing of ions reveals that the counter-streaming cores are mostly composed of ions initially located at the same side of the separatrix,while the other two accelerated populations in the parallel direction are composed of ions crossing through the neutral sheet.Through analysis of energy conversion of these populations,it is found that the ion energization along the separatrix is attributable primarily to the Hall electric field,while that in the region between the two separatrices is caused primarily by the induced reconnection electric field.For the counter-streaming population,the low-energy ions that cross the separatrix twice are affected by both Hall and reconnection electric fields,while the high-energy ions that directly enter the separatrix from the unperturbed plasma are energized mainly by the Hall electric field.For the two energized populations in the parallel direction,the ions with lower-energy are accelerated mainly by the in-plane electric field and the Hall electric field on the opposite side of the separatrix,whereas the ions with higher-energy not only experience the same energization process but also are constantly accelerated by the reconnection electric field.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 11473012)the National Basic Research Program of China (973 program, 2014CB845800)+2 种基金the National Postdoctoral Program for Innovative Talents (BX201700115)the China Postdoctoral Science Foundation funded project (2017M620199)the Strategic Priority Research Program of the Chinese Academy of Sciences "Multi-waveband Gravitational Wave Universe" (XDB23040000)
文摘Fast radio bursts(FRBs) are bright radio pulses from the sky with millisecond durations and Jansky-level flux densities. Their origins are still largely uncertain. Here we suggest a new model for FRBs. We argue that the collision of a white dwarf with a black hole can generate a transient accretion disk, from which powerful episodic magnetic blobs will be launched. The collision between two consecutive magnetic blobs can result in a catastrophic magnetic reconnection, which releases a large amount of free magnetic energy and forms a forward shock. The shock propagates through the cold magnetized plasma within the blob in the collision region, radiating through the synchrotron maser mechanism,which is responsible for a non-repeating FRB signal. Our calculations show that the theoretical energetics, radiation frequency, duration timescale and event rate can be very consistent with the observational characteristics of FRBs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40674093 and 40725013, and the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KZCX3-SW-144.
文摘We perform 2.5-dimensional particle-in-cell simulations to investigate the nonlinear evolution of the lower hybrid drift instability (LHDI) in Harris current sheet. Due to the drift motion of electrons in the electric field of the excited low hybrid drift (LHD) waves, the electrons accumulate at the outer layer, and therefore there is net positive charge at the inner edge of the current sheet. This redistribution of charge can create an electrostatic field along the z direction, which then modifies the motions of the electrons along the y direction by E × B drift. This effect strongly changes the structure of the current sheet.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40536030 and 40474058.
文摘Generation of Hall electric field and net charge associated initial conditions of plasma density and magnetic field. with magnetic reconnection is studied under different With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.
基金supported by the National Natural Science Foundation of China (Grant nos. 40974083, 41031064, 41104091,41104090, 41274149 and 41274164)the Ocean Public Welfare Scientific Research Project of China (Grant no. 201005017)+1 种基金the Polar Strategic Research Foundation of China (Grant nos. 20100202, 20100203 and 20120304)the Polar Environment Comprehensive Investigation & Assessment Programs(Grant no. CHINARE 2012-02-03)
文摘Using high temporal resolution optical data obtained from three-wavelength all-sky imagers at Chinese Yellow River Station in the Arctic, together with the EISCAT Svalbard radar (ESR) and SuperDARN radars, we investigated the dayside pole- ward moving auroral forms (PMAFs) and the associated plasma features in the polar ionosphere under difibrent interplanetary magnetic field (1MF) conditions, between 0900 and 1010 UT on 22 December 2003. Simultaneous optical and ESR observations revealed that all PMAFs were clearly associated with pulsed particle precipitations. During northward IMF, particles can precipi- tate into lower altitudes and reach the ionospheric E-region, and there is a reverse convection cell associated with these PMAFs. This cell is one of the typical signatures of the dayside high-latitude (lobe) reconnection in the polar ionosphere. These results indicate that the PMAFs were associated with the high-latitude reconnection. During southward IMF, the PMAFs show larger lati- tudinal motion, indicating a longer mean lifetime, and the associated ionospheric features indicate that the PMAFs were generated by the dayside low-latitude reconnection.
基金Project supported by the National Natural Science of China(Grant Nos.41527804 and 41774169)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJSSW-DQC010).
文摘Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.