Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for...Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.展开更多
This article analyses key technology used by network layer based on ZigBee technology. Then a reconfigure network as well as its strategy of forming network and distributing node is given. The simulation proved that t...This article analyses key technology used by network layer based on ZigBee technology. Then a reconfigure network as well as its strategy of forming network and distributing node is given. The simulation proved that the stability of reconfigure network and the ability of transmitting pass through obstacle are better than tradi-tional network;it has an active significance for shorter delay because of the flexible of the improved forming network strategy.展开更多
In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu...In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu...The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.展开更多
With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasu...With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.展开更多
With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computin...With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.展开更多
A polarization converter with broadband polarization characteristics and capable of dynamic reconfiguration is proposed.By introducing out-of-plane degrees of freedom,dynamically tunable broadband and high-efficiency ...A polarization converter with broadband polarization characteristics and capable of dynamic reconfiguration is proposed.By introducing out-of-plane degrees of freedom,dynamically tunable broadband and high-efficiency linear polarization conversion within the wavelength range of 2000-2800 nm is achieved.Research results indicate that when a two-dimensional(2D)split-ring resonator(SRR)is irradiated by a low-dose focused ion beam,it will deform upward and transform into a three-dimensional(3D)SRR,achieving a linear polarization conversion efficiency of over 90%.The 3D SRR can be driven by electrostatic force to return to the 2D SRR state,thereby realizing the dynamic reconfiguration of this polarization converter.By changing the applied voltage and adjusting the structural parameters,a tailored polarization converter that exhibits broadband performance and high polarization conversion efficiency is also achieved.The results may provide novel ideas and technical methodologies for various applications such as polarized optical imaging,emerging display technologies,polarized optical communication,and optical sensing.展开更多
Mechanical metamaterials are artificial materials that control their macroscopic properties using repetitive units rather than chemical constituents.Through rational design and spatial arrangement of the unit cells,me...Mechanical metamaterials are artificial materials that control their macroscopic properties using repetitive units rather than chemical constituents.Through rational design and spatial arrangement of the unit cells,mechanical metamaterials can realize a range of counterintuitive properties on a larger scale.In this work,a type of mechanical metamaterial unit cell is proposed,exhibiting both compression-twist coupling behavior and bistability that can be programmed.The design involves linking two cylindrical frames with topology-designed inclined beams.Under uniaxial loading,the structure undergoes a compression-twist deformation,along with buckling at two joints of the inclined beams.Through a rational design of the unit's geometric parameters,the structure can retain its deformed state once the applied displacement surpasses a specified threshold,showing a programmed bistable characteristic.We investigated the influence of the involved parameters on the mechanical response of the unit cells numerically,which agrees well with our experimental results.Since the inclined beams dominate the elastic deformation of unit cells,the two cylindrical frames are almost independent of the bistable response and can therefore be designed in any shape for various arrangements of unit cells in multi-dimensional space.展开更多
The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively ...The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads.展开更多
In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a tran...In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna.展开更多
Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quali...Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quality in the power distribution system.Researchers have considered the use of distributed generation resources in recent years.There are numerous advantages to utilizing these resources,the most significant of which are the reduction of network losses and enhancement of voltage stability.Non-dominated Sorting Genetic Algorithm II(NSGA-II),Multi-Objective Particle Swarm Optimization(MOPSO),and Intersect Mutation Differential Evolution(IMDE)algorithms are used in this paper to perform optimal reconfiguration,simultaneous location,and capacity determination of distributed generation resources and capacitor banks.Three scenarios were used to replicate the studies.The reconfiguration of the switches,as well as the location and determination of the capacitor bank’s optimal capacity,were investigated in this scenario.However,in the third scenario,reconfiguration,and determining the location and capacity of the Distributed Generation(DG)resources and capacitor banks have been carried out simultaneously.Finally,the simulation results of these three algorithms are compared.The results indicate that the proposed NSGAII algorithm outperformed the other two multi-objective algorithms and was capable of maintaining smaller objective functions in all scenarios.Specifically,the energy losses were reduced from 211 to 51.35 kW(a 75.66%reduction),119.13 kW(a 43.54%reduction),and 23.13 kW(an 89.04%reduction),while the voltage stability index(VSI)decreased from 6.96 to 2.105,1.239,and 1.257,respectively,demonstrating significant improvement in the voltage profile.展开更多
The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interfe...The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interference(EMI),and multifunctional materi-als.However,fabricating desirable shielding materials by directly coating LMs on soft polymer substrates remains a challenge because of the huge surface tension and weak wettability of LMs.In this study,Ga-based composite paste is prepared from a mixture of Ga and dia-mond nonmetallic particles through ultrasonic fragmentation.At various temperatures,the resulting LM composite putty(LMP)exhibits soft and hard properties and can thus be molded into specific shapes according to application needs.In addition,the composite can be eas-ily coated onto polymer substrates,such as thermoplastic polyurethane(TPU)elastomer.The fabricated LMP–TPU exhibits an impress-ive shape deformation capacity of 1100%,demonstrating exceptional tensile properties and achieving electromagnetic interference–shielding effectiveness of up to 52 dB.Furthermore,it retains an ultrahigh conductivity of 20000 S/m,even under a strain of 600%.This feature further makes it a highly competitive multifunctional material.展开更多
In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio...In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.展开更多
In recent years,physical unclonable function(PUF)has emerged as a lightweight solution in the Internet of Things security.However,conventional PUFs based on complementary metal oxide semiconductor(CMOS)present challen...In recent years,physical unclonable function(PUF)has emerged as a lightweight solution in the Internet of Things security.However,conventional PUFs based on complementary metal oxide semiconductor(CMOS)present challenges such as insufficient randomness,significant power and area overhead,and vulnerability to environmental factors,leading to reduced reliability.In this study,we realize a strong,highly reliable and reconfigurable PUF with resistance against machine-learning attacks in a 1 kb spinorbit torque magnetic random access memory fabricated using a 180 nm CMOS process.This strong PUF achieves a challenge-response pair capacity of 10^(9) through a computing-in-memory approach.The results demonstrate that the proposed PUF exhibits near-ideal performance metrics:50.07% uniformity,50% diffuseness,49.89% uniqueness,and a bit error rate of 0%,even in a 375 K environment.The reconfigurability of PUF is demonstrated by a reconfigurable Hamming distance of 49.31% and a correlation coefficient of less than 0.2,making it difficult to extract output keys through side-channel analysis.Furthermore,resistance to machine-learning modeling attacks is confirmed by achieving an ideal accuracy prediction of approximately 50% in the test set.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose...Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose significant limitations on capacity expansion,often requiring physical replacement and causing service disruptions.Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios,but their operation is contingent upon a continuous power supply and complex driving systems.In this work,we present a novel,non-volatile tunable PLC platform based on Sb_(2)S_(3)phase-change materials.The proposed device,which incor-porates a Mach-Zehnder interferometer(MZI)optical switch structure,offers tunable splitting ratios via laser-direct writing or ohmic heating,providing flexible reconfiguration capabilities.Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80,with a modest increase of approximately 1 dB in additional loss.This work highlights the potential of the proposed platform for low-power,high-efficiency,and reconfigurable photonic networks.展开更多
Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment thr...Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming.However,it is challenging to obtain instantaneous channel state information(I-CSI)for RIS,which obliges us to use statistical channel state information(S-CSI)to achieve passive beamforming.In this paper,RIS-aided multiple-input single-output(MISO)multi-user downlink communication system with correlated channels is investigated.Then,we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency(ESE)of all users to improve the network capacity.Since it is too hard to compute sum ESE,an ESE approximation is adopted to reformulate the problem into a more tractable form.Then,we present two joint beamforming algorithms,namely the singular value decomposition-gradient descent(SVD-GD)algorithm and the fractional programming-gradient descent(FP-GD)algorithm.Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.展开更多
Reconfigurable intelligent surface(RIS)has proven to be promising for future wireless communication.Due to its ability to manipulate electromagnetic(EM)waves,RIS provides a flexible and programmable way to implement i...Reconfigurable intelligent surface(RIS)has proven to be promising for future wireless communication.Due to its ability to manipulate electromagnetic(EM)waves,RIS provides a flexible and programmable way to implement intelligent wireless environments.While path loss modeling has been conducted in some prior research,an issue remaining unknown is the characteristics of multi-beam path loss for RIS.In this paper,we model,simulate and measure the multi-beam path loss in RIS-assisted broadcast communication scenarios.We propose two specific configurations of RIS and derive the path loss models,which reveal that the incident beam can be equally divided into multiple beams without power loss through rational design of the phase coding.The proposed path loss model is validated through simulation subsequently.To further verify our conclusions,we build a millimeter wave(mmWave)measurement system with a 35 GHz fabricated RIS.The measurement result corresponds well with the simulation,which shows a difference of about 3 dB in the received signal power of quad-beam compared with dual-beam,as well as dual-beam compared with single-beam,except for the impact of radiation patterns of the antennas and RIS elements.展开更多
基金financially supported by the National Council for Scientific and Technological Development(CNPq,Brazil),Swedish-Brazilian Research and Innovation Centre(CISB),and Saab AB under Grant No.CNPq:200053/2022-1the National Council for Scientific and Technological Development(CNPq,Brazil)under Grants No.CNPq:312924/2017-8 and No.CNPq:314660/2020-8.
文摘Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.
文摘This article analyses key technology used by network layer based on ZigBee technology. Then a reconfigure network as well as its strategy of forming network and distributing node is given. The simulation proved that the stability of reconfigure network and the ability of transmitting pass through obstacle are better than tradi-tional network;it has an active significance for shorter delay because of the flexible of the improved forming network strategy.
基金the National Natural-Science Foundation of China(Grant No.62304137)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012479,2024A1515011737,and 2024A1515010006)+4 种基金the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20220818100206013)RSC Researcher Collaborations Grant(Grant No.C23-2422436283)State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024010)the Project on Frontier and Interdisciplinary Research Assessment,Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2023XXA002)NTUT-SZU Joint Research Program.
文摘In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
文摘The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.
基金financial supports from National Key Research and Development Program of China(No.2022YFB3806200)。
文摘With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.
基金Supported by the National Science and Technology Major Project(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005,61802304)the Key R&D Program Projects in Shaanxi Province(No.2024GX-YBXM-100).
文摘With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.
基金supported by the National Natural Science Foundation of China(Nos.T2325005,62375016,62475250)the Science and Technology Project of Guangdong(No.2020B010190001)。
文摘A polarization converter with broadband polarization characteristics and capable of dynamic reconfiguration is proposed.By introducing out-of-plane degrees of freedom,dynamically tunable broadband and high-efficiency linear polarization conversion within the wavelength range of 2000-2800 nm is achieved.Research results indicate that when a two-dimensional(2D)split-ring resonator(SRR)is irradiated by a low-dose focused ion beam,it will deform upward and transform into a three-dimensional(3D)SRR,achieving a linear polarization conversion efficiency of over 90%.The 3D SRR can be driven by electrostatic force to return to the 2D SRR state,thereby realizing the dynamic reconfiguration of this polarization converter.By changing the applied voltage and adjusting the structural parameters,a tailored polarization converter that exhibits broadband performance and high polarization conversion efficiency is also achieved.The results may provide novel ideas and technical methodologies for various applications such as polarized optical imaging,emerging display technologies,polarized optical communication,and optical sensing.
基金supported by the National Natural Science Foundation of China(Grant Numbers:12125205,12321002,12072316,12132014)the Zhejiang Provincial Natural Science Foundation of China(LD22A020001).
文摘Mechanical metamaterials are artificial materials that control their macroscopic properties using repetitive units rather than chemical constituents.Through rational design and spatial arrangement of the unit cells,mechanical metamaterials can realize a range of counterintuitive properties on a larger scale.In this work,a type of mechanical metamaterial unit cell is proposed,exhibiting both compression-twist coupling behavior and bistability that can be programmed.The design involves linking two cylindrical frames with topology-designed inclined beams.Under uniaxial loading,the structure undergoes a compression-twist deformation,along with buckling at two joints of the inclined beams.Through a rational design of the unit's geometric parameters,the structure can retain its deformed state once the applied displacement surpasses a specified threshold,showing a programmed bistable characteristic.We investigated the influence of the involved parameters on the mechanical response of the unit cells numerically,which agrees well with our experimental results.Since the inclined beams dominate the elastic deformation of unit cells,the two cylindrical frames are almost independent of the bistable response and can therefore be designed in any shape for various arrangements of unit cells in multi-dimensional space.
文摘The distribution networks sometimes suffer from excessive losses and voltage violations in densely populated areas. The aim of the present study is to improve the performance of a distribution network by successively applying mono-capacitor positioning, multiple positioning and reconfiguration processes using GA-based algorithms implemented in a Matlab environment. From the diagnostic study of this network, it was observed that a minimum voltage of 0.90 pu induces a voltage deviation of 5.26%, followed by active and reactive losses of 425.08 kW and 435.09 kVAR, respectively. Single placement with the NSGAII resulted in the placement of a 3000 kVAR capacitor at node 128, which proved to be the invariably neuralgic point. Multiple placements resulted in a 21.55% reduction in losses and a 0.74% regression in voltage profile performance. After topology optimization, the loss profile improved by 65.08% and the voltage profile improved by 1.05%. Genetic algorithms are efficient and effective tools for improving the performance of distribution networks, whose degradation is often dynamic due to the natural variability of loads.
基金supported by the"Fundamental Research Funds for the Central Universities"(Grant No.30924010801).
文摘In this study,the potential application of shaped charge jets as transient antennas for electromagnetic signal transmission was explored and an electromagnetic pulse radiation system with a shaped charge jet as a transient antenna was proposed.During the research,crucial characteristics of the transient antenna formed by a shaped charge with a 30 mm diameter,such as resonant frequency,radiation pattern,and radiation efficiency,were evaluated.The typical shaped charge jet morphology was obtained based on the simulations,in which it could insight the dynamic behavior of the shaped charge jet selected.An equivalent model experiment was employed to test the radiation efficiency,and it showed that a shorting pin loading method could increase the relative bandwidth of the jet antenna to 32.8%,and the experimental results correlate with the theoretical predictions for half-wave dipole antennas reasonably well.Additionally,variations in the diameter of the shaped charge jet were found to affect the input impedance and impedance bandwidth,while the length of the jet influenced the resonant frequency of the antenna.This suggests that altering these parameters can achieve reconfigurability of the jet antenna.
文摘Reconfiguration,as well as optimal utilization of distributed generation sources and capacitor banks,are highly effective methods for reducing losses and improving the voltage profile,or in other words,the power quality in the power distribution system.Researchers have considered the use of distributed generation resources in recent years.There are numerous advantages to utilizing these resources,the most significant of which are the reduction of network losses and enhancement of voltage stability.Non-dominated Sorting Genetic Algorithm II(NSGA-II),Multi-Objective Particle Swarm Optimization(MOPSO),and Intersect Mutation Differential Evolution(IMDE)algorithms are used in this paper to perform optimal reconfiguration,simultaneous location,and capacity determination of distributed generation resources and capacitor banks.Three scenarios were used to replicate the studies.The reconfiguration of the switches,as well as the location and determination of the capacitor bank’s optimal capacity,were investigated in this scenario.However,in the third scenario,reconfiguration,and determining the location and capacity of the Distributed Generation(DG)resources and capacitor banks have been carried out simultaneously.Finally,the simulation results of these three algorithms are compared.The results indicate that the proposed NSGAII algorithm outperformed the other two multi-objective algorithms and was capable of maintaining smaller objective functions in all scenarios.Specifically,the energy losses were reduced from 211 to 51.35 kW(a 75.66%reduction),119.13 kW(a 43.54%reduction),and 23.13 kW(an 89.04%reduction),while the voltage stability index(VSI)decreased from 6.96 to 2.105,1.239,and 1.257,respectively,demonstrating significant improvement in the voltage profile.
基金supported by the National Natural Science Foundation of China(Nos.52271167 and U21A2064)the Key Program of Natural Science Foundation of Henan Province,China(No.242300421188)+1 种基金ZUA Innovation Fund for Graduate Education,China(No.2024CX134)Henan Key Laboratory of Aeronautical Material and Technology Open Foundation,China(No.ZHKF-240103).
文摘The development of stretchable conductors with high deformation,conductivity,and thermal conductivity using liquid metal(LM)has sparked widespread interest in the fields of flexible electronics,electromagnetic interference(EMI),and multifunctional materi-als.However,fabricating desirable shielding materials by directly coating LMs on soft polymer substrates remains a challenge because of the huge surface tension and weak wettability of LMs.In this study,Ga-based composite paste is prepared from a mixture of Ga and dia-mond nonmetallic particles through ultrasonic fragmentation.At various temperatures,the resulting LM composite putty(LMP)exhibits soft and hard properties and can thus be molded into specific shapes according to application needs.In addition,the composite can be eas-ily coated onto polymer substrates,such as thermoplastic polyurethane(TPU)elastomer.The fabricated LMP–TPU exhibits an impress-ive shape deformation capacity of 1100%,demonstrating exceptional tensile properties and achieving electromagnetic interference–shielding effectiveness of up to 52 dB.Furthermore,it retains an ultrahigh conductivity of 20000 S/m,even under a strain of 600%.This feature further makes it a highly competitive multifunctional material.
基金support from the National Key Research and Development Program of China(Grant nos.2024YFA1409700 and 2023YFA1407000)the National Natural Science Foundation of China(Grant no.62374158).
文摘In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.
基金supported by the National Natural Science Foundation of China(92164206,52261145694,T2394474,T2394470,623B2015,62271026,62401026,and 62404013)the National Key Research and Development Program of China(2022YFB4400200)+1 种基金the New Cornerstone Science Foundation through the XPLORER PRIZE,the National Postdoctoral Program for Innovative Talents(BX20220374 and BX20240455)the China Postdoctoral Science Foundation Funded Project(2023M740177 and 2022M720345).
文摘In recent years,physical unclonable function(PUF)has emerged as a lightweight solution in the Internet of Things security.However,conventional PUFs based on complementary metal oxide semiconductor(CMOS)present challenges such as insufficient randomness,significant power and area overhead,and vulnerability to environmental factors,leading to reduced reliability.In this study,we realize a strong,highly reliable and reconfigurable PUF with resistance against machine-learning attacks in a 1 kb spinorbit torque magnetic random access memory fabricated using a 180 nm CMOS process.This strong PUF achieves a challenge-response pair capacity of 10^(9) through a computing-in-memory approach.The results demonstrate that the proposed PUF exhibits near-ideal performance metrics:50.07% uniformity,50% diffuseness,49.89% uniqueness,and a bit error rate of 0%,even in a 375 K environment.The reconfigurability of PUF is demonstrated by a reconfigurable Hamming distance of 49.31% and a correlation coefficient of less than 0.2,making it difficult to extract output keys through side-channel analysis.Furthermore,resistance to machine-learning modeling attacks is confirmed by achieving an ideal accuracy prediction of approximately 50% in the test set.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
基金sponsored by the National Key Research and Development Program of China(2020YFA0714504,2019YFA0709100)the program of the National Natural Science Foundation of China(U24A20309,62305043).
文摘Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose significant limitations on capacity expansion,often requiring physical replacement and causing service disruptions.Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios,but their operation is contingent upon a continuous power supply and complex driving systems.In this work,we present a novel,non-volatile tunable PLC platform based on Sb_(2)S_(3)phase-change materials.The proposed device,which incor-porates a Mach-Zehnder interferometer(MZI)optical switch structure,offers tunable splitting ratios via laser-direct writing or ohmic heating,providing flexible reconfiguration capabilities.Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80,with a modest increase of approximately 1 dB in additional loss.This work highlights the potential of the proposed platform for low-power,high-efficiency,and reconfigurable photonic networks.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805Science and Technology on Communication Networks Laboratorysupported by China Scholarship Council.
文摘Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming.However,it is challenging to obtain instantaneous channel state information(I-CSI)for RIS,which obliges us to use statistical channel state information(S-CSI)to achieve passive beamforming.In this paper,RIS-aided multiple-input single-output(MISO)multi-user downlink communication system with correlated channels is investigated.Then,we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency(ESE)of all users to improve the network capacity.Since it is too hard to compute sum ESE,an ESE approximation is adopted to reformulate the problem into a more tractable form.Then,we present two joint beamforming algorithms,namely the singular value decomposition-gradient descent(SVD-GD)algorithm and the fractional programming-gradient descent(FP-GD)algorithm.Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.
基金supported in part by the National Key Research and Development Program of China under Grants 2023YFB3811505in part by the National Natural Science Foundation of China(NSFC)under Grants 62261160576,62201138,62301156,and 62401137+4 种基金in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2023022-1 and BE2023022in part by the Natural Science Foundation of Jiangsu Province under Grant BK20220809 and BK20241281in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003in part by the China National Postdoctoral Program for Innovative Talents under Grant BX20230065in part by the Jiangsu Excellent Postdoctoral Program under Grant 2023ZB476.
文摘Reconfigurable intelligent surface(RIS)has proven to be promising for future wireless communication.Due to its ability to manipulate electromagnetic(EM)waves,RIS provides a flexible and programmable way to implement intelligent wireless environments.While path loss modeling has been conducted in some prior research,an issue remaining unknown is the characteristics of multi-beam path loss for RIS.In this paper,we model,simulate and measure the multi-beam path loss in RIS-assisted broadcast communication scenarios.We propose two specific configurations of RIS and derive the path loss models,which reveal that the incident beam can be equally divided into multiple beams without power loss through rational design of the phase coding.The proposed path loss model is validated through simulation subsequently.To further verify our conclusions,we build a millimeter wave(mmWave)measurement system with a 35 GHz fabricated RIS.The measurement result corresponds well with the simulation,which shows a difference of about 3 dB in the received signal power of quad-beam compared with dual-beam,as well as dual-beam compared with single-beam,except for the impact of radiation patterns of the antennas and RIS elements.