A dynamically reconfigurable system can change its configuration during operation, and studies of such systems are being carried out in many fields. In particular, medical technology and aerospace engineering must ens...A dynamically reconfigurable system can change its configuration during operation, and studies of such systems are being carried out in many fields. In particular, medical technology and aerospace engineering must ensure system safety because any defect will have serious consequences. Model checking is a method for verifying system safety. In this paper, we propose the Dynamic Linear Hybrid Automaton (DLHA) specification language and show a method to analyze reachability for a system consisting of several DLHAs.展开更多
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel...This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.展开更多
This paper focuses on the design process for reconfigurable architecture. Our contribution focuses on introducing a new temporal partitioning algorithm. Our algorithm is based on typical mathematic flow to solve the t...This paper focuses on the design process for reconfigurable architecture. Our contribution focuses on introducing a new temporal partitioning algorithm. Our algorithm is based on typical mathematic flow to solve the temporal partitioning problem. This algorithm optimizes the transfer of data required between design partitions and the reconfiguration overhead. Results show that our algorithm considerably decreases the communication cost and the latency compared with other well known algorithms.展开更多
Partial Reconfigurable FPGAs (Field Programmable Gate Array) allow tasks to be placed and removed dynamically at runtime. One of the challenging problems is the placement of modules on reconfigurable resources. Seve...Partial Reconfigurable FPGAs (Field Programmable Gate Array) allow tasks to be placed and removed dynamically at runtime. One of the challenging problems is the placement of modules on reconfigurable resources. Several modules placement techniques have been introduced in the literature to solve the temporal placement problem. This paper presents a temporal placement approach that manages the resources of a reconfigurable device. In fact, the authors' contribution focuses on introducing a new temporal placement algorithm that aims to minimize the communication cost between modules. Results show an important improvement in communication cost compared with other approaches.展开更多
Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by gl...Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are cost- effective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.展开更多
In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based...In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based on the balanced distribution of functional characteristics for ma- chines. With this method, functional characteristics were classified based on machining functions of cutting-tools and machining accuracy of machines. Then the optimization objective was set as the to- tal shortest mobile distance that all the workpieces are moved from one machine to another, and an improved genetic algorithm (GA) was proposed to optimize the configuration. The elitist strategy was used to enhance the global optimization ability of GA, and excellent gene pool was designed to maintain the diversity of population. Software Matlab was used to realize the algorithm, and a case study of simulation was used to evaluate the method.展开更多
Unmanned robotic systems are expected to liberate people from heavy,monotonous,and dangerous work.However,it is still difficult for robots to work in complicated environments and handle diverse tasks.To this end,a rob...Unmanned robotic systems are expected to liberate people from heavy,monotonous,and dangerous work.However,it is still difficult for robots to work in complicated environments and handle diverse tasks.To this end,a robotic system with four legs,four wheels,and a reconfigurable arm is designed.Special attention has been given to making the robot compact,agile,and versatile.Firstly,by using separate wheels and legs,it removes the coupling in the traditional wheeled–legged system and guarantees highly efficient locomotion in both the wheeled and legged modes.Secondly,a leg–arm reconfiguration design is adopted to extend the manipulation capability of the system,which not only reduces the total weight but also allows for dexterous manipulation and multi-limb cooperation.Thirdly,a multi-task control strategy based on variable configurations is proposed for the system,which greatly enhances the adaptability of the robot to complicated environments.Experimental results are given,which validate the effectiveness of the system in mobility and operation capability.展开更多
Reconfigurable battery systems(RBSs)provide a promising alternative to traditional battery systems due to their flexible and dynamically changeable topological structures that can be adapted to different battery charg...Reconfigurable battery systems(RBSs)provide a promising alternative to traditional battery systems due to their flexible and dynamically changeable topological structures that can be adapted to different battery charging and discharging strategies.A critical system parameter known as the maximum allowable current(MAC)is pivotal to RBS operation.This parameter is instrumental in maintaining the current of each individual battery within a safe range and serves as a guiding indicator for the system’s reconfiguration,ensuring its safety and reliability.This paper proposes a method for calculating the MAC of an arbitrary RBS using a greedy algorithm in conjunction with a directed graph model of the RBS.Using the shortest path of the battery,the greedy algorithm transforms the exhaustion of the switch states in the brute-force algorithm or variable search without utilizing structures in the heuristic algorithms in the combination of the shortest paths.The directed graph model,based on an equivalent circuit,provides a specific method for calculating the MAC of a given structure.The proposed method is validated using 2 previously published RBS structures and an additional one with a more complex structure.The results are the same as those from the brute-force algorithm,but the proposed method substantially improves the computational efficiency,being theoretically N_(s)2^(N_(s))−^(N_(b))log_(10)N_(b) times faster than the brute-force algorithm for an RBS with N_(b) batteries and N_(s) switches.Another advantage of the proposed method is its ability to calculate the MAC of RBSs with arbitrary structures and variable batteries,even in scenarios with random isolated batteries.展开更多
文摘A dynamically reconfigurable system can change its configuration during operation, and studies of such systems are being carried out in many fields. In particular, medical technology and aerospace engineering must ensure system safety because any defect will have serious consequences. Model checking is a method for verifying system safety. In this paper, we propose the Dynamic Linear Hybrid Automaton (DLHA) specification language and show a method to analyze reachability for a system consisting of several DLHAs.
基金the National Natural Science Foundation of China(61833012,61773162,61590924)the Natural Science Foundation of Shanghai(18ZR1420000)。
文摘This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
文摘This paper focuses on the design process for reconfigurable architecture. Our contribution focuses on introducing a new temporal partitioning algorithm. Our algorithm is based on typical mathematic flow to solve the temporal partitioning problem. This algorithm optimizes the transfer of data required between design partitions and the reconfiguration overhead. Results show that our algorithm considerably decreases the communication cost and the latency compared with other well known algorithms.
文摘Partial Reconfigurable FPGAs (Field Programmable Gate Array) allow tasks to be placed and removed dynamically at runtime. One of the challenging problems is the placement of modules on reconfigurable resources. Several modules placement techniques have been introduced in the literature to solve the temporal placement problem. This paper presents a temporal placement approach that manages the resources of a reconfigurable device. In fact, the authors' contribution focuses on introducing a new temporal placement algorithm that aims to minimize the communication cost between modules. Results show an important improvement in communication cost compared with other approaches.
文摘Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are cost- effective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.
基金Supported by the National Natural Science Foundation of China(51105039)
文摘In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based on the balanced distribution of functional characteristics for ma- chines. With this method, functional characteristics were classified based on machining functions of cutting-tools and machining accuracy of machines. Then the optimization objective was set as the to- tal shortest mobile distance that all the workpieces are moved from one machine to another, and an improved genetic algorithm (GA) was proposed to optimize the configuration. The elitist strategy was used to enhance the global optimization ability of GA, and excellent gene pool was designed to maintain the diversity of population. Software Matlab was used to realize the algorithm, and a case study of simulation was used to evaluate the method.
基金Shenzhen Science Fund for Distinguished Young Scholars,Grant/Award Number:RCJC20210706091946001National Natural Science Foundation of China,Grant/Award Numbers:62003188,U1813216Guangdong Special Branch Plan for Young Talent with Scientific and Technological Innovation,Grant/Award Number:2019TQ05Z111。
文摘Unmanned robotic systems are expected to liberate people from heavy,monotonous,and dangerous work.However,it is still difficult for robots to work in complicated environments and handle diverse tasks.To this end,a robotic system with four legs,four wheels,and a reconfigurable arm is designed.Special attention has been given to making the robot compact,agile,and versatile.Firstly,by using separate wheels and legs,it removes the coupling in the traditional wheeled–legged system and guarantees highly efficient locomotion in both the wheeled and legged modes.Secondly,a leg–arm reconfiguration design is adopted to extend the manipulation capability of the system,which not only reduces the total weight but also allows for dexterous manipulation and multi-limb cooperation.Thirdly,a multi-task control strategy based on variable configurations is proposed for the system,which greatly enhances the adaptability of the robot to complicated environments.Experimental results are given,which validate the effectiveness of the system in mobility and operation capability.
文摘Reconfigurable battery systems(RBSs)provide a promising alternative to traditional battery systems due to their flexible and dynamically changeable topological structures that can be adapted to different battery charging and discharging strategies.A critical system parameter known as the maximum allowable current(MAC)is pivotal to RBS operation.This parameter is instrumental in maintaining the current of each individual battery within a safe range and serves as a guiding indicator for the system’s reconfiguration,ensuring its safety and reliability.This paper proposes a method for calculating the MAC of an arbitrary RBS using a greedy algorithm in conjunction with a directed graph model of the RBS.Using the shortest path of the battery,the greedy algorithm transforms the exhaustion of the switch states in the brute-force algorithm or variable search without utilizing structures in the heuristic algorithms in the combination of the shortest paths.The directed graph model,based on an equivalent circuit,provides a specific method for calculating the MAC of a given structure.The proposed method is validated using 2 previously published RBS structures and an additional one with a more complex structure.The results are the same as those from the brute-force algorithm,but the proposed method substantially improves the computational efficiency,being theoretically N_(s)2^(N_(s))−^(N_(b))log_(10)N_(b) times faster than the brute-force algorithm for an RBS with N_(b) batteries and N_(s) switches.Another advantage of the proposed method is its ability to calculate the MAC of RBSs with arbitrary structures and variable batteries,even in scenarios with random isolated batteries.