Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations...Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.展开更多
To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element fragmen...To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element fragmentation.Under the constraint of a reconfigurable array,the LSLGM algorithm schedules node from a ready queue to the current reconfigurable cell array block.After mapping a node,its successor’s indegree value will be dynamically updated.If its successor’s indegree is zero,it will be directly scheduled to the ready queue;otherwise,the predecessor must be dynamically checked.If the predecessor cannot be mapped,it will be scheduled to a blocking queue.To dynamically adjust the ready node scheduling order,the scheduling function is constructed by exploiting factors,such as node number,node level,and node dependency.Compared with the loop subgraph-level mapping algorithm,experimental results show that the total cycles of the LSLGM algorithm decreases by an average of 33.0%(PEA44)and 33.9%(PEA_(7×7)).Compared with the epimorphism map algorithm,the total cycles of the LSLGM algorithm decrease by an average of 38.1%(PEA_(4×4))and 39.0%(PEA_(7×7)).The feasibility of LSLGM is verified.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
Inspired by the design philosophy of information metasurfaces based on the digital coding concept,a planar 4-bit reconfigurable antenna array with low profile of 0.15λ0(whereλ0is the free-space wavelength)is present...Inspired by the design philosophy of information metasurfaces based on the digital coding concept,a planar 4-bit reconfigurable antenna array with low profile of 0.15λ0(whereλ0is the free-space wavelength)is presented.The array is based on a digital coding radiation element consisting of a 1-bit magnetoelectric(ME)dipole and a miniaturized reflection-type phase shifter(RTPS).The proposed 1-bit ME dipole can provide two digital states of"0"and"1"(with 0°and 180°phase responses)over a wide frequency band by individually exciting its two symmetrical feeding ports.The designed RTPS is able to realize a relative phase shift of 173°.By digitally quantizing its phase in the range of 157.5°,additional eight digital states at intervals of 22.5°are obtained.To achieve low sidelobe levels,a 1:16 power divider based on the Taylor line source method is employed to feed the array,A prototype of the proposed 4-bit antenna array has been fabricated and tested,and the experimental results are in good agreement with the simulations.Scanning beams within a±45°range were measured with a maximum realized gain of 13.4 dBi at12 GHz.The sidelobe and cross-polarization levels are below-14.3 and-23.0 dB,respectively.Furthermore,the beam pointing error is within 0.8°,and the 3 dB gain bandwidth of the broadside beam is 25%.Due to its outstanding performance,the array holds potential for significant applications in radar and wireless communication systems.展开更多
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy...The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.展开更多
Deep learning algorithms have been widely used in computer vision,natural language processing and other fields.However,due to the ever-increasing scale of the deep learning model,the requirements for storage and compu...Deep learning algorithms have been widely used in computer vision,natural language processing and other fields.However,due to the ever-increasing scale of the deep learning model,the requirements for storage and computing performance are getting higher and higher,and the processors based on the von Neumann architecture have gradually exposed significant shortcomings such as consumption and long latency.In order to alleviate this problem,large-scale processing systems are shifting from a traditional computing-centric model to a data-centric model.A near-memory computing array architecture based on the shared buffer is proposed in this paper to improve system performance,which supports instructions with the characteristics of store-calculation integration,reducing the data movement between the processor and main memory.Through data reuse,the processing speed of the algorithm is further improved.The proposed architecture is verified and tested through the parallel realization of the convolutional neural network(CNN)algorithm.The experimental results show that at the frequency of 110 MHz,the calculation speed of a single convolution operation is increased by 66.64%on average compared with the CNN architecture that performs parallel calculations on field programmable gate array(FPGA).The processing speed of the whole convolution layer is improved by 8.81%compared with the reconfigurable array processor that does not support near-memory computing.展开更多
This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to reali...This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.展开更多
This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition(PSC)by reconfiguring PV arrays using Aquila optimizer(AO).AO is based on the natural behaviors of Aquila in cap...This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition(PSC)by reconfiguring PV arrays using Aquila optimizer(AO).AO is based on the natural behaviors of Aquila in capturing prey,which can choose the best hunting mechanism ingeniously and quickly by balancing the local exploitation and global exploration via four hunting methods of Aquila:choosing the searching area through high soar with the vertical stoop,exploring in different searching spaces through contour flight with quick glide attack,exploiting in convergence searching space through low flight with slow attack,and swooping through walk and grabbing prey.In general,PV arrays reconfiguration is a problem of discrete optimization,thus a series of discrete operations are adopted in AO to enhance its optimization performance.Simulation results based on 10 cases under PSCs show that the mismatched power loss obtained by AO is the smallest compared with genetic algorithm,particle swarm optimization,ant colony algorithm,grasshopper optimization algorithm,and butterfly optimization algorithm,which reduced by 4.34%against butterfly optimization algorithm.展开更多
After the extension of depth modeling mode 4(DMM-4)in 3D high efficiency video coding(3D-HEVC),the computational complexity increases sharply,which causes the real-time performance of video coding to be impacted.To re...After the extension of depth modeling mode 4(DMM-4)in 3D high efficiency video coding(3D-HEVC),the computational complexity increases sharply,which causes the real-time performance of video coding to be impacted.To reduce the computational complexity of DMM-4,a simplified hardware-friendly contour prediction algorithm is proposed in this paper.Based on the similarity between texture and depth map,the proposed algorithm directly codes depth blocks to calculate edge regions to reduce the number of reference blocks.Through the verification of the test sequence on HTM16.1,the proposed algorithm coding time is reduced by 9.42%compared with the original algorithm.To avoid the time consuming of serial coding on HTM,a parallelization design of the proposed algorithm based on reconfigurable array processor(DPR-CODEC)is proposed.The parallelization design reduces the storage access time,configuration time and saves the storage cost.Verified with the Xilinx Virtex 6 FPGA,experimental results show that parallelization design is capable of processing HD 1080p at a speed above 30 frames per second.Compared with the related work,the scheme reduces the LUTs by 42.3%,the REG by 85.5%and the hardware resources by 66.7%.The data loading speedup ratio of parallel scheme can reach 3.4539.On average,the different sized templates serial/parallel speedup ratio of encoding time can reach 2.446.展开更多
Unstructured and irregular graph data causes strong randomness and poor locality of data accesses in graph processing.This paper optimizes the depth-branch-resorting algorithm(DBR),and proposes a branch-alternation-re...Unstructured and irregular graph data causes strong randomness and poor locality of data accesses in graph processing.This paper optimizes the depth-branch-resorting algorithm(DBR),and proposes a branch-alternation-resorting algorithm(BAR).In order to make the algorithm run in parallel and improve the efficiency of algorithm operation,the BAR algorithm is mapped onto the reconfigurable array processor(APR-16)to achieve vertex reordering,effectively improving the locality of graph data.This paper validates the BAR algorithm on the GraphBIG framework,by utilizing the reordered dataset with BAR on breadth-first search(BFS),single source shortest paht(SSSP)and betweenness centrality(BC)algorithms for traversal.The results show that compared with DBR and Corder algorithms,BAR can reduce execution time by up to 33.00%,and 51.00%seperatively.In terms of data movement,the BAR algorithm has a maximum reduction of 39.00%compared with the DBR algorithm and 29.66%compared with Corder algorithm.In terms of computational complexity,the BAR algorithm has a maximum reduction of 32.56%compared with DBR algorithm and53.05%compared with Corder algorithm.展开更多
In presence of line-of-sight (LOS) propagation, multiple-input multiple-output (MIMO) systems can achieve maximum capacity over the whole signal-to-noise ratio (SNR) region by deploying reconfigurable antenna ar...In presence of line-of-sight (LOS) propagation, multiple-input multiple-output (MIMO) systems can achieve maximum capacity over the whole signal-to-noise ratio (SNR) region by deploying reconfigurable antenna arrays. In this paper, the moment generating function (MGF) formulas of the mutual information (MI) is obtained for LOS MIMO systems with reconfigurable arrays. Then the exact expression of the mean MI is derived in an easily evaluated form. The results show an excellent match between the theoretical curves and the Monte-Carlo simulations.展开更多
In the artificial intelligence-driven modern wireless communication system,antennas are required to be reconfigurable in terms of size according to changing application scenarios.However,conventional antennas with con...In the artificial intelligence-driven modern wireless communication system,antennas are required to be reconfigurable in terms of size according to changing application scenarios.However,conventional antennas with constant phase distributions cannot achieve enhanced gains in different reconfigurable sizes.In this paper,we propose a mechanically reconfigurable radiation array(RRA)based on miniaturized elements and a mechanically reconfigurable system to obtain gain-enhanced antennas in compact and deployed states.A five-element RRA with a phase-reconfigurable center element is designed and analyzed theoretically.The experimental sample has been fabricated,driven by a deployable frame with only one degree of freedom to realize the size and phase distribution reconfiguration simultaneously to validate the enhanced gains of RRA.The proposed RRA can be tessellated into larger arrays to achieve higher gains in other frequency regimes,such as terahertz or photonics applications with nanometer fabrication technology.展开更多
Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or ...Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or in the configuration memory. The aim of our research is to characterize self-test and repair processes in Fault Tolerant(FT) dr-FPGA systems in the presence of environmental faults and explore their interrelationships. We develop a Continuous Time Markov Chain(CTMC) model that captures the high level fail-repair processes on a dr-FPGA with periodic online Built-In Self-Test(BIST) and scrubbing to detect and repair faults with minimum latency. Simulation results reveal that given an average fault interval of 36 s, an optimum self-test interval of 48.3 s drives the system to spend 13% of its time in self-tests, remain in safe working states for 76% of its time and face risky fault-prone states for only 7% of its time. Further, we demonstrate that a well-tuned repair strategy boosts overall system availability, minimizes the occurrence of unsafe states, and accommodates a larger range of fault rates within which the system availability remains stable within 10% of its maximum level.展开更多
Row Parallel Coarse-Grained Reconfigurable Architecture(RPCGRA)has the advantages of maximum parallelism and programmable flexibility.Designing an efficient algorithm to map the diverse applications onto RPCGRA is dif...Row Parallel Coarse-Grained Reconfigurable Architecture(RPCGRA)has the advantages of maximum parallelism and programmable flexibility.Designing an efficient algorithm to map the diverse applications onto RPCGRA is difficult due to a number of RPCGRA hardware constraints.To solve this problem,the nodes of the data flow graph must be partitioned and scheduled onto the RPCGRA.In this paper,we present a Depth-First Greedy Mapping(DFGM)algorithm that simultaneously considers the communication costs and the use times of the Reconfigurable Cell Array(RCA).Compared with level breadth mapping,the performance of DFGM is better.The percentage of maximum improvement in the use times of RCA is 33%and the percentage of maximum improvement in non-original input and output times is 64.4%(Given Discrete Cosine Transfor 8(DCT8),and the area of reconfigurable processing unit is 56).Compared with level-based depth mapping,DFGM also obtains the lowest averages of use times of RCA,non-original input and output times,and the reconfigurable time.展开更多
This paper applies the innovative idea of DLCI to PV array reconfiguration under various PSCs to capture the maxi-mum output power of a PV generation system.DLCI is a hybrid algorithm that integrates multiple meta-heu...This paper applies the innovative idea of DLCI to PV array reconfiguration under various PSCs to capture the maxi-mum output power of a PV generation system.DLCI is a hybrid algorithm that integrates multiple meta-heuristic algo-rithms.Through the competition and cooperation of the search mechanisms of different metaheuristic algorithms,the local exploration and global development of the algorithm can be effectively improved to avoid power mismatch of the PV system caused by the algorithm falling into a local optimum.A series of discrete operations are performed on DLCI to solve the discrete optimization problem of PV array reconfiguration.Two structures(DLCI-I and DLCI-II)are designed to verify the effect of increasing the number of sub-optimizers on the optimized performance of DLCI by simulation based on 10 cases of PSCs.The simulation shows that the increase of the number of sub-optimizers only gives a relatively small improvement on the DLCI optimization performance.DLCI has a significant effect on the reduction in the number of power peaks caused by PSC.The PV array-based reconstruction system of DLCI-II is reduced by 4.05%,1.88%,1.68%,0.99%and 3.39%,when compared to the secondary optimization algorithms.展开更多
Reconfigurable antenna arrays increase the flexibility of adaptive MIMO systems. At present, most designs have adopted antenna arrays with reconfigurable elements. However, antenna selection is also an effective metho...Reconfigurable antenna arrays increase the flexibility of adaptive MIMO systems. At present, most designs have adopted antenna arrays with reconfigurable elements. However, antenna selection is also an effective method, which has not been fully investigated. In this paper, the potential benefits of a four-element antenna array with selection circuits in the UMTS band (1920-2170 MHz) are explored. The array has eight pin-diodes embedded in the feeding network to select any sub-set of elements. For evaluation, an adaptive MIMO system was set up and a measurement campaign was taken in an indoor multi-path environment. The measurements were performed over a 300 MHz bandwidth centered at 2.05 GHz, covering the UMTS band. The results show that different channel conditions prefer different antenna array configurations. Therefore, in varying channel conditions the antenna array can support antenna selection algorithms to select the best sub-set of elements to increase channel capacity.展开更多
Partial shading is one of the important factors in reducing maximum power generation from PV(Photovoltaic)arrays.Maximum power generation can be improved by selecting a PV array through a Total-Cross-Tied(T-C-T)connec...Partial shading is one of the important factors in reducing maximum power generation from PV(Photovoltaic)arrays.Maximum power generation can be improved by selecting a PV array through a Total-Cross-Tied(T-C-T)connection.However,maximum power generated from T-C-T can still be improved by distribution of shading over various rows.Due to distribution of shading,the current entering the node increases and results in improved maximum power generation.This can be done effectively by using Sudoku reconfiguration techniques.These techniques are economical,since they don’t require any sensors and switching networks.This technique only changes the physical location of the PV panel but the electrical connection between the panels remains the same.This paper proposes a Modified Sudoku reconfiguration pattern which enhances the maximum power from the T-C-T connected PV array.Furthermore,the theoretical calculation of row current and power output have been done for existing and proposed topologies under various shading patterns.The performance of the proposed pattern has been analyzed and compared using specifications,such as Global Maximum Power(GMP),Fill Factor(FF),mismatch losses,and efficiency.From the results,it can be concluded that the Modified Sudoku reconfiguration enhances the GMP under all shading conditions.展开更多
基金supported by the National Natural Science Foundation of China(General Program)under Grant 52571385National Key R&D Program of China(Grant No.2024YFC2815000 and No.2024YFB3816000)+12 种基金Open Fund of State Key Laboratory of Deep-sea Manned Vehicles(Grant No.2025SKLDMV07)Shenzhen Science and Technology Program(WDZC20231128114452001,JCYJ20240813112107010 and JCYJ20240813111910014)the Tsinghua SIGS Scientific Research Startup Fund(QD2022021C)the Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM 01 Z006)the Ocean Decade International Cooperation Center(ODCC)(GHZZ3702840002024020000026)Shenzhen Key Laboratory of Advanced Technology for Marine Ecology(ZDSYS20230626091459009)Shenzhen Science and Technology Program(No.KJZD20240903100905008)the National Natural Science Foundation of China(No.22305141)Pearl River Talent Program(No.2023QN10C114)General Program of Guangdong Province(No.2025A1515011700)the Guangdong Innovative and Entrepreneurial Research Team Program(2023ZT10C040)Scientific Research Foundation from Shenzhen Finance Bureau(No.GJHZ20240218113600002)Tsinghua University(JC2023001).
文摘Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.
基金This research was supported by the Natural Science Foundation of Anhui Province(No.1808085MF203)the Natural Science Foundation of China(Nos.61972438 and 61432017).
文摘To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,we propose a Loop Subgraph-Level Greedy Mapping(LSLGM)algorithm using parallelism and processing element fragmentation.Under the constraint of a reconfigurable array,the LSLGM algorithm schedules node from a ready queue to the current reconfigurable cell array block.After mapping a node,its successor’s indegree value will be dynamically updated.If its successor’s indegree is zero,it will be directly scheduled to the ready queue;otherwise,the predecessor must be dynamically checked.If the predecessor cannot be mapped,it will be scheduled to a blocking queue.To dynamically adjust the ready node scheduling order,the scheduling function is constructed by exploiting factors,such as node number,node level,and node dependency.Compared with the loop subgraph-level mapping algorithm,experimental results show that the total cycles of the LSLGM algorithm decreases by an average of 33.0%(PEA44)and 33.9%(PEA_(7×7)).Compared with the epimorphism map algorithm,the total cycles of the LSLGM algorithm decrease by an average of 38.1%(PEA_(4×4))and 39.0%(PEA_(7×7)).The feasibility of LSLGM is verified.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
基金supported in part by the National Key Research and Development Program of China(2017YFA0700201,2017YFA0700202,and 2017YFA0700203)the National Natural Science Foundation of China(61631007,61571117,61138001,61371035,61722106,61731010,11227904,and 62171124)+1 种基金the 111 Project(111-2-05)the Scientific Research Foundation of Graduate School of Southeast University(YBYP2119)。
文摘Inspired by the design philosophy of information metasurfaces based on the digital coding concept,a planar 4-bit reconfigurable antenna array with low profile of 0.15λ0(whereλ0is the free-space wavelength)is presented.The array is based on a digital coding radiation element consisting of a 1-bit magnetoelectric(ME)dipole and a miniaturized reflection-type phase shifter(RTPS).The proposed 1-bit ME dipole can provide two digital states of"0"and"1"(with 0°and 180°phase responses)over a wide frequency band by individually exciting its two symmetrical feeding ports.The designed RTPS is able to realize a relative phase shift of 173°.By digitally quantizing its phase in the range of 157.5°,additional eight digital states at intervals of 22.5°are obtained.To achieve low sidelobe levels,a 1:16 power divider based on the Taylor line source method is employed to feed the array,A prototype of the proposed 4-bit antenna array has been fabricated and tested,and the experimental results are in good agreement with the simulations.Scanning beams within a±45°range were measured with a maximum realized gain of 13.4 dBi at12 GHz.The sidelobe and cross-polarization levels are below-14.3 and-23.0 dB,respectively.Furthermore,the beam pointing error is within 0.8°,and the 3 dB gain bandwidth of the broadside beam is 25%.Due to its outstanding performance,the array holds potential for significant applications in radar and wireless communication systems.
基金supported by the National Nature Science Foundation of China (62063011,62273169, 61922037, 61873115)Yunnan Fundamental Research Projects(202001AV070001)+1 种基金Yunnan Major Scientific and Technological Projects(202202AG050002)partially supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province (2020SE502)。
文摘The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.
基金Supported by the National Natural Science Foundation of China(No.61802304,61834005,61772417,61602377)the Shaanxi Province KeyR&D Plan(No.2021GY-029)。
文摘Deep learning algorithms have been widely used in computer vision,natural language processing and other fields.However,due to the ever-increasing scale of the deep learning model,the requirements for storage and computing performance are getting higher and higher,and the processors based on the von Neumann architecture have gradually exposed significant shortcomings such as consumption and long latency.In order to alleviate this problem,large-scale processing systems are shifting from a traditional computing-centric model to a data-centric model.A near-memory computing array architecture based on the shared buffer is proposed in this paper to improve system performance,which supports instructions with the characteristics of store-calculation integration,reducing the data movement between the processor and main memory.Through data reuse,the processing speed of the algorithm is further improved.The proposed architecture is verified and tested through the parallel realization of the convolutional neural network(CNN)algorithm.The experimental results show that at the frequency of 110 MHz,the calculation speed of a single convolution operation is increased by 66.64%on average compared with the CNN architecture that performs parallel calculations on field programmable gate array(FPGA).The processing speed of the whole convolution layer is improved by 8.81%compared with the reconfigurable array processor that does not support near-memory computing.
文摘This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.
基金supported by the Scientific Research Projects of Inner Mongolia Power(Group)Co.,Ltd.(Internal Electric Technology(2021)No.3).
文摘This paper develops a real-time PV arrays maximum power harvesting scheme under partial shading condition(PSC)by reconfiguring PV arrays using Aquila optimizer(AO).AO is based on the natural behaviors of Aquila in capturing prey,which can choose the best hunting mechanism ingeniously and quickly by balancing the local exploitation and global exploration via four hunting methods of Aquila:choosing the searching area through high soar with the vertical stoop,exploring in different searching spaces through contour flight with quick glide attack,exploiting in convergence searching space through low flight with slow attack,and swooping through walk and grabbing prey.In general,PV arrays reconfiguration is a problem of discrete optimization,thus a series of discrete operations are adopted in AO to enhance its optimization performance.Simulation results based on 10 cases under PSCs show that the mismatched power loss obtained by AO is the smallest compared with genetic algorithm,particle swarm optimization,ant colony algorithm,grasshopper optimization algorithm,and butterfly optimization algorithm,which reduced by 4.34%against butterfly optimization algorithm.
基金Supported by the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61874087,61634004)the Shaanxi Province Key R&D Plan(No.2020JM-525,2021GY-029,2021KW-16)。
文摘After the extension of depth modeling mode 4(DMM-4)in 3D high efficiency video coding(3D-HEVC),the computational complexity increases sharply,which causes the real-time performance of video coding to be impacted.To reduce the computational complexity of DMM-4,a simplified hardware-friendly contour prediction algorithm is proposed in this paper.Based on the similarity between texture and depth map,the proposed algorithm directly codes depth blocks to calculate edge regions to reduce the number of reference blocks.Through the verification of the test sequence on HTM16.1,the proposed algorithm coding time is reduced by 9.42%compared with the original algorithm.To avoid the time consuming of serial coding on HTM,a parallelization design of the proposed algorithm based on reconfigurable array processor(DPR-CODEC)is proposed.The parallelization design reduces the storage access time,configuration time and saves the storage cost.Verified with the Xilinx Virtex 6 FPGA,experimental results show that parallelization design is capable of processing HD 1080p at a speed above 30 frames per second.Compared with the related work,the scheme reduces the LUTs by 42.3%,the REG by 85.5%and the hardware resources by 66.7%.The data loading speedup ratio of parallel scheme can reach 3.4539.On average,the different sized templates serial/parallel speedup ratio of encoding time can reach 2.446.
基金the National Key R&D Program of China(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005)+3 种基金the Shaanxi Province Key R&D Plan(No.2022GY-027)the Key Scientific Research Project of Shaanxi Department of Education(No.22JY060)the Education Research Project of XUPT(No.JGA202108)the Graduate Student Innovation Fund of Xi'an University of Posts and Telecommunications(No.CXJJZL2022011)。
文摘Unstructured and irregular graph data causes strong randomness and poor locality of data accesses in graph processing.This paper optimizes the depth-branch-resorting algorithm(DBR),and proposes a branch-alternation-resorting algorithm(BAR).In order to make the algorithm run in parallel and improve the efficiency of algorithm operation,the BAR algorithm is mapped onto the reconfigurable array processor(APR-16)to achieve vertex reordering,effectively improving the locality of graph data.This paper validates the BAR algorithm on the GraphBIG framework,by utilizing the reordered dataset with BAR on breadth-first search(BFS),single source shortest paht(SSSP)and betweenness centrality(BC)algorithms for traversal.The results show that compared with DBR and Corder algorithms,BAR can reduce execution time by up to 33.00%,and 51.00%seperatively.In terms of data movement,the BAR algorithm has a maximum reduction of 39.00%compared with the DBR algorithm and 29.66%compared with Corder algorithm.In terms of computational complexity,the BAR algorithm has a maximum reduction of 32.56%compared with DBR algorithm and53.05%compared with Corder algorithm.
基金supported by the China Important National Science & Technology Specific Projects (2012ZX03001043-009, 2012ZX03006003-003)the National Natural Science Foundation of China (61171105)+1 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0598)Telecommunications Science Technical Institute (Datang Telecommunication Technology and Industry Group)
文摘In presence of line-of-sight (LOS) propagation, multiple-input multiple-output (MIMO) systems can achieve maximum capacity over the whole signal-to-noise ratio (SNR) region by deploying reconfigurable antenna arrays. In this paper, the moment generating function (MGF) formulas of the mutual information (MI) is obtained for LOS MIMO systems with reconfigurable arrays. Then the exact expression of the mean MI is derived in an easily evaluated form. The results show an excellent match between the theoretical curves and the Monte-Carlo simulations.
文摘In the artificial intelligence-driven modern wireless communication system,antennas are required to be reconfigurable in terms of size according to changing application scenarios.However,conventional antennas with constant phase distributions cannot achieve enhanced gains in different reconfigurable sizes.In this paper,we propose a mechanically reconfigurable radiation array(RRA)based on miniaturized elements and a mechanically reconfigurable system to obtain gain-enhanced antennas in compact and deployed states.A five-element RRA with a phase-reconfigurable center element is designed and analyzed theoretically.The experimental sample has been fabricated,driven by a deployable frame with only one degree of freedom to realize the size and phase distribution reconfiguration simultaneously to validate the enhanced gains of RRA.The proposed RRA can be tessellated into larger arrays to achieve higher gains in other frequency regimes,such as terahertz or photonics applications with nanometer fabrication technology.
文摘Dynamically reconfigurable Field Programmable Gate Array(dr-FPGA) based electronic systems on board mission-critical systems are highly susceptible to radiation induced hazards that may lead to faults in the logic or in the configuration memory. The aim of our research is to characterize self-test and repair processes in Fault Tolerant(FT) dr-FPGA systems in the presence of environmental faults and explore their interrelationships. We develop a Continuous Time Markov Chain(CTMC) model that captures the high level fail-repair processes on a dr-FPGA with periodic online Built-In Self-Test(BIST) and scrubbing to detect and repair faults with minimum latency. Simulation results reveal that given an average fault interval of 36 s, an optimum self-test interval of 48.3 s drives the system to spend 13% of its time in self-tests, remain in safe working states for 76% of its time and face risky fault-prone states for only 7% of its time. Further, we demonstrate that a well-tuned repair strategy boosts overall system availability, minimizes the occurrence of unsafe states, and accommodates a larger range of fault rates within which the system availability remains stable within 10% of its maximum level.
基金supported by the Natural Science Foundation of Anhui Province(No.1808085MF203)the National Natural Science Foundation of China(No.61432017)。
文摘Row Parallel Coarse-Grained Reconfigurable Architecture(RPCGRA)has the advantages of maximum parallelism and programmable flexibility.Designing an efficient algorithm to map the diverse applications onto RPCGRA is difficult due to a number of RPCGRA hardware constraints.To solve this problem,the nodes of the data flow graph must be partitioned and scheduled onto the RPCGRA.In this paper,we present a Depth-First Greedy Mapping(DFGM)algorithm that simultaneously considers the communication costs and the use times of the Reconfigurable Cell Array(RCA).Compared with level breadth mapping,the performance of DFGM is better.The percentage of maximum improvement in the use times of RCA is 33%and the percentage of maximum improvement in non-original input and output times is 64.4%(Given Discrete Cosine Transfor 8(DCT8),and the area of reconfigurable processing unit is 56).Compared with level-based depth mapping,DFGM also obtains the lowest averages of use times of RCA,non-original input and output times,and the reconfigurable time.
基金National Natural Science Foundation of China(61963020,62263014)Yunnan Provincial Basic Research Project(202201AT070857).
文摘This paper applies the innovative idea of DLCI to PV array reconfiguration under various PSCs to capture the maxi-mum output power of a PV generation system.DLCI is a hybrid algorithm that integrates multiple meta-heuristic algo-rithms.Through the competition and cooperation of the search mechanisms of different metaheuristic algorithms,the local exploration and global development of the algorithm can be effectively improved to avoid power mismatch of the PV system caused by the algorithm falling into a local optimum.A series of discrete operations are performed on DLCI to solve the discrete optimization problem of PV array reconfiguration.Two structures(DLCI-I and DLCI-II)are designed to verify the effect of increasing the number of sub-optimizers on the optimized performance of DLCI by simulation based on 10 cases of PSCs.The simulation shows that the increase of the number of sub-optimizers only gives a relatively small improvement on the DLCI optimization performance.DLCI has a significant effect on the reduction in the number of power peaks caused by PSC.The PV array-based reconstruction system of DLCI-II is reduced by 4.05%,1.88%,1.68%,0.99%and 3.39%,when compared to the secondary optimization algorithms.
基金Supported by the National Basic Research Program of China (No.2007CB310605)the National High-Tech Research and Development (863) Program of China (No. 2006AA01Z265)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060003100)the Tsinghua-QUALCOMM Associated Research Plan
文摘Reconfigurable antenna arrays increase the flexibility of adaptive MIMO systems. At present, most designs have adopted antenna arrays with reconfigurable elements. However, antenna selection is also an effective method, which has not been fully investigated. In this paper, the potential benefits of a four-element antenna array with selection circuits in the UMTS band (1920-2170 MHz) are explored. The array has eight pin-diodes embedded in the feeding network to select any sub-set of elements. For evaluation, an adaptive MIMO system was set up and a measurement campaign was taken in an indoor multi-path environment. The measurements were performed over a 300 MHz bandwidth centered at 2.05 GHz, covering the UMTS band. The results show that different channel conditions prefer different antenna array configurations. Therefore, in varying channel conditions the antenna array can support antenna selection algorithms to select the best sub-set of elements to increase channel capacity.
文摘Partial shading is one of the important factors in reducing maximum power generation from PV(Photovoltaic)arrays.Maximum power generation can be improved by selecting a PV array through a Total-Cross-Tied(T-C-T)connection.However,maximum power generated from T-C-T can still be improved by distribution of shading over various rows.Due to distribution of shading,the current entering the node increases and results in improved maximum power generation.This can be done effectively by using Sudoku reconfiguration techniques.These techniques are economical,since they don’t require any sensors and switching networks.This technique only changes the physical location of the PV panel but the electrical connection between the panels remains the same.This paper proposes a Modified Sudoku reconfiguration pattern which enhances the maximum power from the T-C-T connected PV array.Furthermore,the theoretical calculation of row current and power output have been done for existing and proposed topologies under various shading patterns.The performance of the proposed pattern has been analyzed and compared using specifications,such as Global Maximum Power(GMP),Fill Factor(FF),mismatch losses,and efficiency.From the results,it can be concluded that the Modified Sudoku reconfiguration enhances the GMP under all shading conditions.