In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu...In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasu...With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.展开更多
In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio...In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.展开更多
With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computin...With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.展开更多
A polarization converter with broadband polarization characteristics and capable of dynamic reconfiguration is proposed.By introducing out-of-plane degrees of freedom,dynamically tunable broadband and high-efficiency ...A polarization converter with broadband polarization characteristics and capable of dynamic reconfiguration is proposed.By introducing out-of-plane degrees of freedom,dynamically tunable broadband and high-efficiency linear polarization conversion within the wavelength range of 2000-2800 nm is achieved.Research results indicate that when a two-dimensional(2D)split-ring resonator(SRR)is irradiated by a low-dose focused ion beam,it will deform upward and transform into a three-dimensional(3D)SRR,achieving a linear polarization conversion efficiency of over 90%.The 3D SRR can be driven by electrostatic force to return to the 2D SRR state,thereby realizing the dynamic reconfiguration of this polarization converter.By changing the applied voltage and adjusting the structural parameters,a tailored polarization converter that exhibits broadband performance and high polarization conversion efficiency is also achieved.The results may provide novel ideas and technical methodologies for various applications such as polarized optical imaging,emerging display technologies,polarized optical communication,and optical sensing.展开更多
Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose...Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose significant limitations on capacity expansion,often requiring physical replacement and causing service disruptions.Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios,but their operation is contingent upon a continuous power supply and complex driving systems.In this work,we present a novel,non-volatile tunable PLC platform based on Sb_(2)S_(3)phase-change materials.The proposed device,which incor-porates a Mach-Zehnder interferometer(MZI)optical switch structure,offers tunable splitting ratios via laser-direct writing or ohmic heating,providing flexible reconfiguration capabilities.Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80,with a modest increase of approximately 1 dB in additional loss.This work highlights the potential of the proposed platform for low-power,high-efficiency,and reconfigurable photonic networks.展开更多
With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simu...With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simulations of the unit,including the passive pattern and active devices,requiring high data acquisition and training costs.In addition,for passive patterns,the widely employed random pixe-lated method presents design efficiency and effectiveness challenges due to the massive pixel combina-tions and blocked excitation current flow in discrete patterns.To overcome these two critical problems,we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture.First,a non-uniform rational B-spline(NURBS)is introduced to represent continuous pat-terns and solve excitation current flow issues.This representation makes it possible to finely tune con-tinuous patterns with several control points,greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization.Then,employing multiport network theory to separate the passive pat-tern and active device from the unit,the separate design architecture significantly reduces the dataset acquisition cost by 62.5%.Through multistep multiport calculation,the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response,thereby achieving dataset and model reuse for different RIS designs.With a hybrid continuous-discrete optimization algorithm,three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm.Our work offers an efficient solution for RIS automatic design,and the resulting structure is expected to boost RIS appli-cations in the fields of wireless communication and sensing.展开更多
Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment thr...Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming.However,it is challenging to obtain instantaneous channel state information(I-CSI)for RIS,which obliges us to use statistical channel state information(S-CSI)to achieve passive beamforming.In this paper,RIS-aided multiple-input single-output(MISO)multi-user downlink communication system with correlated channels is investigated.Then,we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency(ESE)of all users to improve the network capacity.Since it is too hard to compute sum ESE,an ESE approximation is adopted to reformulate the problem into a more tractable form.Then,we present two joint beamforming algorithms,namely the singular value decomposition-gradient descent(SVD-GD)algorithm and the fractional programming-gradient descent(FP-GD)algorithm.Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.展开更多
Reconfigurable intelligent surface(RIS)has proven to be promising for future wireless communication.Due to its ability to manipulate electromagnetic(EM)waves,RIS provides a flexible and programmable way to implement i...Reconfigurable intelligent surface(RIS)has proven to be promising for future wireless communication.Due to its ability to manipulate electromagnetic(EM)waves,RIS provides a flexible and programmable way to implement intelligent wireless environments.While path loss modeling has been conducted in some prior research,an issue remaining unknown is the characteristics of multi-beam path loss for RIS.In this paper,we model,simulate and measure the multi-beam path loss in RIS-assisted broadcast communication scenarios.We propose two specific configurations of RIS and derive the path loss models,which reveal that the incident beam can be equally divided into multiple beams without power loss through rational design of the phase coding.The proposed path loss model is validated through simulation subsequently.To further verify our conclusions,we build a millimeter wave(mmWave)measurement system with a 35 GHz fabricated RIS.The measurement result corresponds well with the simulation,which shows a difference of about 3 dB in the received signal power of quad-beam compared with dual-beam,as well as dual-beam compared with single-beam,except for the impact of radiation patterns of the antennas and RIS elements.展开更多
In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In...In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.展开更多
Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This pape...Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This paper proposes an architecture by combining RIS with Generalized Spatial Modulation(GSM)and then presents a Multi-Residual Deep Neural Network(MR-DNN)scheme,where the active antennas and their transmitted constellation symbols are detected by sub-DNNs in the detection block.Simulation results demonstrate that the proposed MR-DNN detection algorithm performs considerably better than the traditional Zero-Forcing(ZF)and the Minimum Mean Squared Error(MMSE)detection algorithms in terms of Bit Error Rate(BER).Moreover,the MR-DNN detection algorithm has less time complexity than the traditional detection algorithms.展开更多
Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of t...Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.展开更多
Reconfigurable parallel mechanisms were first discovered in response to the growing demand for flexible and adaptive systems in various fields.Unlike traditional mechanisms,which are designed for specific tasks and ha...Reconfigurable parallel mechanisms were first discovered in response to the growing demand for flexible and adaptive systems in various fields.Unlike traditional mechanisms,which are designed for specific tasks and have fixed topology and mobility characteristics,a reconfigurable parallel mechanism can be adapted to different situations by changing its structure,motion,and function.This adaptability enables a single mechanism to perform a wide range of tasks,reducing the need for multiple dedicated systems.This paper presents a comprehensive review of reconfigurable parallel mechanisms.The characteristics of their designs,analyses of their properties,and challenges they face are reported.The beginning of this paper features an introduction of reconfigurable parallel mechanisms and their classification into different types.Methods for synthesizing reconfigurable parallel mechanisms are discussed.A performance evaluation index related to reconfigurability,workspace,singularity,stiffness,and dynamics,among other indices,is presented.This review covers the challenges faced in the creation of systematic design theories,unified performance analyses,evaluation index systems,and in the implementation of reconfigurable parallel mechanisms,such as the development of efficient control strategies and integration with other technologies.The paper concludes with a discussion of future research directions for reconfigurable parallel mechanisms.展开更多
In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assiste...In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential ...In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.展开更多
All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and ...All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.展开更多
Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which c...Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.展开更多
Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are...Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.展开更多
基金the National Natural-Science Foundation of China(Grant No.62304137)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012479,2024A1515011737,and 2024A1515010006)+4 种基金the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20220818100206013)RSC Researcher Collaborations Grant(Grant No.C23-2422436283)State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024010)the Project on Frontier and Interdisciplinary Research Assessment,Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2023XXA002)NTUT-SZU Joint Research Program.
文摘In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
基金financial supports from National Key Research and Development Program of China(No.2022YFB3806200)。
文摘With the rapid development of holographic technology,metasurface-based holographic communication schemes have demonstrated immense potential for electromagnetic(EM)multifunctionality.However,traditional passive metasurfaces are severely limited by their lack of reconfigurability,hindering the realization of versatile holographic applications.Origami,an art form that mechanically induces spatial deformations,serves as a platform for multifunctional devices and has garnered significant attention in optics,physics,and materials science.The Miura-ori folding paradigm,characterized by its continuous reconfigurability in folded states,remains unexplored in the context of holographic imaging.Herein,we integrate the principles of Rosenfeld with L-and D-metal chiral enantiomers on a Miura-ori surface to tailor the aperture distribution.Leveraging the continuously tunable nature of the Miura-ori's folded states,the chiral response of the metallic structures varies across different folding configurations,enabling distinct EM holographic imaging functionalities.In the planar state,holographic encryption is achieved.Under specific folding conditions and driven by spin circularly polarized(CP)waves at a particular frequency,multiplexed holographic images can be reconstructed on designated focal planes with CP selectivity.Notably,the fabricated origami metasurface exhibits a large negative Poisson ratio,facilitating portability and deployment and offering novel avenues for spin-selective systems,camouflage,and information encryption.
基金support from the National Key Research and Development Program of China(Grant nos.2024YFA1409700 and 2023YFA1407000)the National Natural Science Foundation of China(Grant no.62374158).
文摘In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices.
基金Supported by the National Science and Technology Major Project(No.2022ZD0119001)the National Natural Science Foundation of China(No.61834005,61802304)the Key R&D Program Projects in Shaanxi Province(No.2024GX-YBXM-100).
文摘With the growing demand for compute-intensive applications such as artificial intelligence(AI)and video processing,traditional reconfigurable array processors fail to meet the requirements of high-performance computing and related domains,primarily due to their high power consumption and low energy efficiency.To address this limitation,this paper proposes an accuracy-adaptive approxi-mate reconfigurable array architecture featuring preset dual thresholds and support for four computa-tional accuracy levels,enabling flexible adaptation to diverse application needs.The architecture in-tegrates a self-adaptive mechanism that dynamically adjusts computational precision based on real-time error threshold feedback.To evaluate the proposed architecture,the you only look once version 5(YOLOv5)deep neural network algorithm is parallelized and deployed on the approximate recon-figurable array.Experimental results demonstrate that the architecture achieves an 18.93%reduc-tion in power consumption compared with conventional reconfigurable structures operating in full-pre-cision mode.Additionally,the design exhibits superior energy efficiency and reduced computational resource utilization,thereby significantly enhancing the overall performance and applicability of reconfigurable array processors in power-sensitive scenarios.
基金supported by the National Natural Science Foundation of China(Nos.T2325005,62375016,62475250)the Science and Technology Project of Guangdong(No.2020B010190001)。
文摘A polarization converter with broadband polarization characteristics and capable of dynamic reconfiguration is proposed.By introducing out-of-plane degrees of freedom,dynamically tunable broadband and high-efficiency linear polarization conversion within the wavelength range of 2000-2800 nm is achieved.Research results indicate that when a two-dimensional(2D)split-ring resonator(SRR)is irradiated by a low-dose focused ion beam,it will deform upward and transform into a three-dimensional(3D)SRR,achieving a linear polarization conversion efficiency of over 90%.The 3D SRR can be driven by electrostatic force to return to the 2D SRR state,thereby realizing the dynamic reconfiguration of this polarization converter.By changing the applied voltage and adjusting the structural parameters,a tailored polarization converter that exhibits broadband performance and high polarization conversion efficiency is also achieved.The results may provide novel ideas and technical methodologies for various applications such as polarized optical imaging,emerging display technologies,polarized optical communication,and optical sensing.
基金sponsored by the National Key Research and Development Program of China(2020YFA0714504,2019YFA0709100)the program of the National Natural Science Foundation of China(U24A20309,62305043).
文摘Planar lightwave circuit(PLC)splitters have long been foundational components in passive optical communication networks,achieving commercial success since the 1990s.However,their inherent fixed splitting ratios impose significant limitations on capacity expansion,often requiring physical replacement and causing service disruptions.Thermally tunable optical splitters address this challenge by enabling adjustable splitting ratios,but their operation is contingent upon a continuous power supply and complex driving systems.In this work,we present a novel,non-volatile tunable PLC platform based on Sb_(2)S_(3)phase-change materials.The proposed device,which incor-porates a Mach-Zehnder interferometer(MZI)optical switch structure,offers tunable splitting ratios via laser-direct writing or ohmic heating,providing flexible reconfiguration capabilities.Experimental results demonstrate non-volatile power splitting ranging from 50∶50 to 20∶80,with a modest increase of approximately 1 dB in additional loss.This work highlights the potential of the proposed platform for low-power,high-efficiency,and reconfigurable photonic networks.
基金supported by the National Key Research and Development Program of China(2023YFB3811502)the National Science Foundation of China(62225108)+5 种基金the Fundamental Research Funds for the Central Universities(2242022k60003)the National Natural Science Foundation of China(62288101 and 62201139)the Jiangsu Province Frontier Leading Technology Basic Research Project(BK20212002)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the Fundamental Research Funds for the Central Universities(2242024RCB0005 and 2242024K30009)the 111 Project(111-2-05).
文摘With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simulations of the unit,including the passive pattern and active devices,requiring high data acquisition and training costs.In addition,for passive patterns,the widely employed random pixe-lated method presents design efficiency and effectiveness challenges due to the massive pixel combina-tions and blocked excitation current flow in discrete patterns.To overcome these two critical problems,we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture.First,a non-uniform rational B-spline(NURBS)is introduced to represent continuous pat-terns and solve excitation current flow issues.This representation makes it possible to finely tune con-tinuous patterns with several control points,greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization.Then,employing multiport network theory to separate the passive pat-tern and active device from the unit,the separate design architecture significantly reduces the dataset acquisition cost by 62.5%.Through multistep multiport calculation,the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response,thereby achieving dataset and model reuse for different RIS designs.With a hybrid continuous-discrete optimization algorithm,three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm.Our work offers an efficient solution for RIS automatic design,and the resulting structure is expected to boost RIS appli-cations in the fields of wireless communication and sensing.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805Science and Technology on Communication Networks Laboratorysupported by China Scholarship Council.
文摘Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming.However,it is challenging to obtain instantaneous channel state information(I-CSI)for RIS,which obliges us to use statistical channel state information(S-CSI)to achieve passive beamforming.In this paper,RIS-aided multiple-input single-output(MISO)multi-user downlink communication system with correlated channels is investigated.Then,we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency(ESE)of all users to improve the network capacity.Since it is too hard to compute sum ESE,an ESE approximation is adopted to reformulate the problem into a more tractable form.Then,we present two joint beamforming algorithms,namely the singular value decomposition-gradient descent(SVD-GD)algorithm and the fractional programming-gradient descent(FP-GD)algorithm.Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.
基金supported in part by the National Key Research and Development Program of China under Grants 2023YFB3811505in part by the National Natural Science Foundation of China(NSFC)under Grants 62261160576,62201138,62301156,and 62401137+4 种基金in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2023022-1 and BE2023022in part by the Natural Science Foundation of Jiangsu Province under Grant BK20220809 and BK20241281in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003in part by the China National Postdoctoral Program for Innovative Talents under Grant BX20230065in part by the Jiangsu Excellent Postdoctoral Program under Grant 2023ZB476.
文摘Reconfigurable intelligent surface(RIS)has proven to be promising for future wireless communication.Due to its ability to manipulate electromagnetic(EM)waves,RIS provides a flexible and programmable way to implement intelligent wireless environments.While path loss modeling has been conducted in some prior research,an issue remaining unknown is the characteristics of multi-beam path loss for RIS.In this paper,we model,simulate and measure the multi-beam path loss in RIS-assisted broadcast communication scenarios.We propose two specific configurations of RIS and derive the path loss models,which reveal that the incident beam can be equally divided into multiple beams without power loss through rational design of the phase coding.The proposed path loss model is validated through simulation subsequently.To further verify our conclusions,we build a millimeter wave(mmWave)measurement system with a 35 GHz fabricated RIS.The measurement result corresponds well with the simulation,which shows a difference of about 3 dB in the received signal power of quad-beam compared with dual-beam,as well as dual-beam compared with single-beam,except for the impact of radiation patterns of the antennas and RIS elements.
基金supported by Ministry of Science and Technology of the People’s Republic of China(2020YFB1808101)the Project“5G evolution wireless air interface intelligent R&D and verification public platform project”supported by Ministry of Industry and Information Technology of the People’s Republic of China(TC220A04M).
文摘In this paper,a physical model of RIS of bistatic polarized radar cross section is derived starting from the Stratton-Chu equations under the assumptions of physical optics,PEC,far field and rectangular RIS element.In the context of important physical characteristics of the backscattering polarization of RIS,the modeling of the RIS wireless channel requires a tradeoff between complexity and accuracy,as well as usability and simplicity.For channel modeling of RIS systems,RIS is modelled as multi-equivalent virtual base stations(BSs)induced by multi polarized electromagnetic waves from different incident directions.The comparison between test and simulation results demonstrates that the proposed algorithm effectively captures the key characteristics of the general RIS element polarization physical model and provides accurate results.
基金supported in part by the Shenzhen Basic Research Program under Grant JCYJ20220531103008018,20231120142345001 and 20231127144045001the Guangdong Basic Research Program under Grant 2024ZDZX1016the Natural Science Foundation of China under Grant U20A20156.
文摘Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This paper proposes an architecture by combining RIS with Generalized Spatial Modulation(GSM)and then presents a Multi-Residual Deep Neural Network(MR-DNN)scheme,where the active antennas and their transmitted constellation symbols are detected by sub-DNNs in the detection block.Simulation results demonstrate that the proposed MR-DNN detection algorithm performs considerably better than the traditional Zero-Forcing(ZF)and the Minimum Mean Squared Error(MMSE)detection algorithms in terms of Bit Error Rate(BER).Moreover,the MR-DNN detection algorithm has less time complexity than the traditional detection algorithms.
基金supported by the National Natural Science Foundation of China to Jiping Huang(12035004 and 12320101004)the Innovation Program of the Shanghai Municipal Education Commission to Jiping Huang(2023ZKZD06)+2 种基金the National Natural Science Foundation of China to Ying Li(92163123 and 52250191)the Zhejiang Provincial Natural Science Foundation of China to Ying Li(LZ24A050002)the National Natural Science Foundation of China to Liujun Xu(12375040,12088101,and U2330401).
文摘Thermal metamaterial represents a groundbreaking approach to control heat conduction,and,as a crucial component,thermal invisibility is of utmost importance for heat management.Despite the flourishing development of thermal invisibility schemes,they still face two limitations in practical applications.First,objects are typically completely enclosed in traditional cloaks,making them difficult to use and unsuitable for objects with heat sources.Second,although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility,their designs are complex and rigid,making them unsuitable for large-scale use in real threedimensional(3D)spaces.Here,we propose a concept of a thermal dome to achieve 3D invisibility.Our scheme includes an open functional area,greatly enhancing its usability and applicability.It features a reconfigurable structure,constructed with simple isotropic natural materials,making it suitable for dynamic requirements.The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments,consistent with the theory.The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains,such as direct current electric fields and magnetic fields.
基金the financial support from the Research Institute for Artificial Intelligence of Things(RIAIoT)the Research Institute for Advanced Manufacturing(RIAM)+1 种基金the Research Institute for Intelligent Wearable Systems(RI-IWEAR)the Research Centre of Textiles for Future Fashion(RCTFF)at the Hong Kong Polytechnic University。
文摘Reconfigurable parallel mechanisms were first discovered in response to the growing demand for flexible and adaptive systems in various fields.Unlike traditional mechanisms,which are designed for specific tasks and have fixed topology and mobility characteristics,a reconfigurable parallel mechanism can be adapted to different situations by changing its structure,motion,and function.This adaptability enables a single mechanism to perform a wide range of tasks,reducing the need for multiple dedicated systems.This paper presents a comprehensive review of reconfigurable parallel mechanisms.The characteristics of their designs,analyses of their properties,and challenges they face are reported.The beginning of this paper features an introduction of reconfigurable parallel mechanisms and their classification into different types.Methods for synthesizing reconfigurable parallel mechanisms are discussed.A performance evaluation index related to reconfigurability,workspace,singularity,stiffness,and dynamics,among other indices,is presented.This review covers the challenges faced in the creation of systematic design theories,unified performance analyses,evaluation index systems,and in the implementation of reconfigurable parallel mechanisms,such as the development of efficient control strategies and integration with other technologies.The paper concludes with a discussion of future research directions for reconfigurable parallel mechanisms.
基金supported in part by the National Natural Science Foundation of China under Grant 62071253,Grant 62371252 and Grant 62271268in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project.
文摘In this paper,we examine an illegal wireless communication network consisting of an illegal user receiving illegal signals from an illegal station and propose an active reconfigurable intelligent surface(ARIS)-assisted multi-antenna jamming(MAJ)scheme denoted by ARIS-MAJ to interfere with the illegal signal transmission.In order to strike a balance between the jamming performance and the energy consumption,we consider a so-called jamming energy efficiency(JEE)which is defined as the ratio of achievable rate reduced by the jamming system to the corresponding power consumption.We formulate an optimization problem to maximize the JEE for the proposed ARIS-MAJ scheme by jointly optimizing the jammer’s beamforming vector and ARIS’s reflecting coefficients under the constraint that the jamming power received at the illegal user is lower than the illegal user’s detection threshold.To address the non-convex optimization problem,we propose the Dinkelbach-based alternating optimization(AO)algorithm by applying the semidefinite relaxation(SDR)algorithm with Gaussian randomization method.Numerical results validate that the proposed ARIS-MAJ scheme outperforms the passive reconfigurable intelligent surface(PRIS)-assisted multi-antenna jamming(PRIS-MAJ)scheme and the conventional multiantenna jamming scheme without RIS(NRIS-MAJ)in terms of the JEE.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金Supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202401ZR0025)the National Natural Science Founda-tion of China(62164011,62301081)the Natural Science Foundation of Shaanxi Province(2022JQ-589)。
文摘In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.
基金supported in part by Beijing Natural Science Foundation Grant No.Z220006in part by the National Natural Science Foundation of China under Grant No.62304087。
文摘All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.
基金supported by the National Key R&D Program of China(Grant No.2018YFB1304600)the National Natural Science Foundation of China(Grant No.62003337)+1 种基金the Open Fund for State Key Laboratory of Robotics(Grant No.2023O03)the Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases(Grant No.2021-KF-12-05).
文摘Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.
基金supported by the National Key R&D Program of China(No.2021YFE0110900)the National Natural Science Foundation of China(Nos.U22B2078 and 11991033)。
文摘Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.