Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
Selecting appropriate tourist attractions to visit in real time is an important problem for travellers.Since recommenders proactively suggest items based on user preference,they are a promising solution for this probl...Selecting appropriate tourist attractions to visit in real time is an important problem for travellers.Since recommenders proactively suggest items based on user preference,they are a promising solution for this problem.Travellers visit tourist attractions sequentially by considering multiple attributes at the same time.Therefore,it is desirable to consider this when developing recommenders for tourist attractions.Using GRU4REC,we proposed RNN-based sequence-aware recommenders(RNN-SARs)that use multiple sequence datasets for training the recommended model,named multi-RNN-SARs.We proposed two types of multi-RNN-SARs-concatenate-RNN-SARs and parallel-RNN-SARs.In order to evaluate multi-RNN-SARs,we compared hit rate(HR)and mean reciprocal rank(MRR)of the item-based collaborative filtering recommender(item-CFR),RNN-SAR with the single-sequence dataset(basic-RNN-SAR),multi-RNN-SARs and the state-of-the-art SARs using a real-world travel dataset.Our research shows that multi-RNN-SARs have significantly higher performances compared to item-CFR.Not all multi-RNNSARs outperform basic-RNN-SAR but the best multi-RNN-SAR achieves comparable performance to that of the state-of-the-art algorithms.These results highlight the importance of using multiple sequence datasets in RNN-SARs and the importance of choosing appropriate sequence datasets and learning methods for implementing multi-RNN-SARs in practice.展开更多
The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in ...The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods.展开更多
A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such...A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.展开更多
The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profile...The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.展开更多
This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis...This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.展开更多
This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and...This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and reproductive medicine.展开更多
A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by ana...A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by analyzing patterns in interactions and similarities between users,leveraging past behavior data to make personalized recommendations.Despite its popularity,collaborative filtering faces notable challenges,and one of them is the issue of grey-sheep users who have unusual tastes in the system.Surprisingly,existing research has not extensively explored outlier detection techniques to address the grey-sheep problem.To fill this research gap,this study conducts a comprehensive comparison of 12 outlier detectionmethods(such as LOF,ABOD,HBOS,etc.)and introduces innovative user representations aimed at improving the identification of outliers within recommender systems.More specifically,we proposed and examined three types of user representations:1)the distribution statistics of user-user similarities,where similarities were calculated based on users’rating vectors;2)the distribution statistics of user-user similarities,but with similarities derived from users represented by latent factors;and 3)latent-factor vector representations.Our experiments on the Movie Lens and Yahoo!Movie datasets demonstrate that user representations based on latent-factor vectors consistently facilitate the identification of more grey-sheep users when applying outlier detection methods.展开更多
This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of t...This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.展开更多
A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting....A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting. Furthermore, it was observed that the earlier being sown, the greater the rate of premature bolting when being sown prior to middle August. The rate of premature bolting observed in seedlings sown on August 8 was recorded at 35.6%. It was noted that as the age of the seedlings increased, the rate of premature bolting correspondingly increased. There were notable differences in the tolerance of various cultivars to elevated temperatures and prolonged sunlight exposure. For instance, cultivars such as Zhangjie 1 and Sichuan Shaguodi, which exhibit greater heat resistance, did not demonstrate premature bolting when sown in early August. The prolonged exposure to elevated temperatures, drought conditions, and extended periods of sunlight during the seedling stage of Huarong large leaf mustard, coupled with delayed irrigation and transplantation, contributed to the occurrence of premature bolting. The Huarong large leaf mustard, when been sown from late August to early September and transplanted at the appropriate time, exhibited normal growth and development, with no instances of premature bolting observed. It is advisable to select heat-resistant varieties, such as Zhangjie 1, prior to middle August. Huarong large leaf mustard should be sown in early to middle September. Additionally, it is essential to ensure centralized production and timely release of seeds, prompt transplantation and harvesting, and enhance the management of pests and diseases.展开更多
Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning method...Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning methods often suffer from high sensitivity,leading to unstable recommendation results when facing adversarial samples generated through malicious user behavior.Adversarial training is considered to be an effective method for improving the robustness of tag recommendation systems and addressing adversarial samples.However,it still faces the challenge of overfitting.Although curriculum learning-based adversarial training somewhat mitigates this issue,challenges still exist,such as the lack of a quantitative standard for attack intensity and catastrophic forgetting.To address these challenges,we propose a Self-Paced Adversarial Metric Learning(SPAML)method.First,we employ a metric learning model to capture the deep distance relationships between normal samples.Then,we incorporate a self-paced adversarial training model,which dynamically adjusts the weights of adversarial samples,allowing the model to progressively learn from simpler to more complex adversarial samples.Finally,we jointly optimize the metric learning loss and self-paced adversarial training loss in an adversarial manner,enhancing the robustness and performance of tag recommendation tasks.Extensive experiments on the MovieLens and LastFm datasets demonstrate that SPAML achieves F1@3 and NDCG@3 scores of 22%and 32.7%on the MovieLens dataset,and 19.4%and 29%on the LastFm dataset,respectively,outperforming the most competitive baselines.Specifically,F1@3 improves by 4.7%and 6.8%,and NDCG@3 improves by 5.0%and 6.9%,respectively.展开更多
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films...The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.展开更多
`Introduction Open science is a set of principles and practices that aim to make scientific research accessible to everyone for the benefit of scientists and society.It includes sharing publications,data,software,and ...`Introduction Open science is a set of principles and practices that aim to make scientific research accessible to everyone for the benefit of scientists and society.It includes sharing publications,data,software,and hardware widely,and ensuring that the production of scientific knowledge is inclusive,equitable,and sustainable.展开更多
In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentba...In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentbasedmethods have limitations in capturing complex,multi-faceted relationships in large-scale,sparse datasets.Recent advances in Graph Neural Networks(GNNs)have significantly improved recommendation performance by modeling high-order connection patterns within user-item interaction networks.However,existing GNN-based models like LightGCN and NGCF focus primarily on single-type interactions and often overlook diverse semantic relationships,leading to reduced recommendation diversity and limited generalization.To address these challenges,this paper proposes a dual multi-relational graph neural network recommendation algorithm based on relational interactions.Our approach constructs two complementary graph structures:a User-Item Interaction Graph(UIIG),which explicitly models direct user behaviors such as clicks and purchases,and a Relational Association Graph(RAG),which uncovers latent associations based on user similarities and item attributes.The proposed Dual Multi-relational Graph Neural Network(DMGNN)features two parallel branches that perform multi-layer graph convolutional operations,followed by an adaptive fusion mechanism to effectively integrate information from both graphs.This design enhances the model’s capacity to capture diverse relationship types and complex relational patterns.Extensive experiments conducted on benchmark datasets—including MovieLens-1M,Amazon-Electronics,and Yelp—demonstrate thatDMGNN outperforms state-of-the-art baselines,achieving improvements of up to 12.3%in Precision,9.7%in Recall,and 11.5%in F1 score.Moreover,DMGNN significantly boosts recommendation diversity by 15.2%,balancing accuracy with exploration.These results highlight the effectiveness of leveraging hierarchical multi-relational information,offering a promising solution to the challenges of data sparsity and relation heterogeneity in recommendation systems.Our work advances the theoretical understanding of multi-relational graph modeling and presents practical insights for developing more personalized,diverse,and robust recommender systems.展开更多
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework...As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.展开更多
Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to a...Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios.展开更多
Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency informatio...Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.展开更多
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever...Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.展开更多
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model...The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.展开更多
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users...Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%.展开更多
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
文摘Selecting appropriate tourist attractions to visit in real time is an important problem for travellers.Since recommenders proactively suggest items based on user preference,they are a promising solution for this problem.Travellers visit tourist attractions sequentially by considering multiple attributes at the same time.Therefore,it is desirable to consider this when developing recommenders for tourist attractions.Using GRU4REC,we proposed RNN-based sequence-aware recommenders(RNN-SARs)that use multiple sequence datasets for training the recommended model,named multi-RNN-SARs.We proposed two types of multi-RNN-SARs-concatenate-RNN-SARs and parallel-RNN-SARs.In order to evaluate multi-RNN-SARs,we compared hit rate(HR)and mean reciprocal rank(MRR)of the item-based collaborative filtering recommender(item-CFR),RNN-SAR with the single-sequence dataset(basic-RNN-SAR),multi-RNN-SARs and the state-of-the-art SARs using a real-world travel dataset.Our research shows that multi-RNN-SARs have significantly higher performances compared to item-CFR.Not all multi-RNNSARs outperform basic-RNN-SAR but the best multi-RNN-SAR achieves comparable performance to that of the state-of-the-art algorithms.These results highlight the importance of using multiple sequence datasets in RNN-SARs and the importance of choosing appropriate sequence datasets and learning methods for implementing multi-RNN-SARs in practice.
文摘The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods.
基金Shanghai Frontier Science Research Center for Modern Textiles,Donghua University,ChinaOpen Project of Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment,Zhengzhou University of Light Industry,China(No.IM202303)National Key Research and Development Program of China(No.2019YFB1706300)。
文摘A personalized outfit recommendation has emerged as a hot research topic in the fashion domain.However,existing recommendations do not fully exploit user style preferences.Typically,users prefer particular styles such as casual and athletic styles,and consider attributes like color and texture when selecting outfits.To achieve personalized outfit recommendations in line with user style preferences,this paper proposes a personal style guided outfit recommendation with multi-modal fashion compatibility modeling,termed as PSGNet.Firstly,a style classifier is designed to categorize fashion images of various clothing types and attributes into distinct style categories.Secondly,a personal style prediction module extracts user style preferences by analyzing historical data.Then,to address the limitations of single-modal representations and enhance fashion compatibility,both fashion images and text data are leveraged to extract multi-modal features.Finally,PSGNet integrates these components through Bayesian personalized ranking(BPR)to unify the personal style and fashion compatibility,where the former is used as personal style features and guides the output of the personalized outfit recommendation tailored to the target user.Extensive experiments on large-scale datasets demonstrate that the proposed model is efficient on the personalized outfit recommendation.
基金supported by National Natural Science Foundation of China(62072416)Key Research and Development Special Project of Henan Province(221111210500)Key TechnologiesR&DProgram of Henan rovince(232102211053,242102211071).
文摘The rapid development of short video platforms poses new challenges for traditional recommendation systems.Recommender systems typically depend on two types of user behavior feedback to construct user interest profiles:explicit feedback(interactive behavior),which significantly influences users’short-term interests,and implicit feedback(viewing time),which substantially affects their long-term interests.However,the previous model fails to distinguish between these two feedback methods,leading it to predict only the overall preferences of users based on extensive historical behavior sequences.Consequently,it cannot differentiate between users’long-term and shortterm interests,resulting in low accuracy in describing users’interest states and predicting the evolution of their interests.This paper introduces a video recommendationmodel calledCAT-MFRec(CrossAttention Transformer-Mixed Feedback Recommendation)designed to differentiate between explicit and implicit user feedback within the DIEN(Deep Interest Evolution Network)framework.This study emphasizes the separate learning of the two types of behavioral feedback,effectively integrating them through the cross-attention mechanism.Additionally,it leverages the long sequence dependence capabilities of Transformer technology to accurately construct user interest profiles and predict the evolution of user interests.Experimental results indicate that CAT-MF Rec significantly outperforms existing recommendation methods across various performance indicators.This advancement offers new theoretical and practical insights for the development of video recommendations,particularly in addressing complex and dynamic user behavior patterns.
文摘This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems.
文摘This special issue of the Asian Journal of Andrology is fully dedicated to the thematic area of non-obstructive azoospermia(NOA),one of the most complex and challenging conditions in the realm of andrology,urology,and reproductive medicine.
文摘A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by analyzing patterns in interactions and similarities between users,leveraging past behavior data to make personalized recommendations.Despite its popularity,collaborative filtering faces notable challenges,and one of them is the issue of grey-sheep users who have unusual tastes in the system.Surprisingly,existing research has not extensively explored outlier detection techniques to address the grey-sheep problem.To fill this research gap,this study conducts a comprehensive comparison of 12 outlier detectionmethods(such as LOF,ABOD,HBOS,etc.)and introduces innovative user representations aimed at improving the identification of outliers within recommender systems.More specifically,we proposed and examined three types of user representations:1)the distribution statistics of user-user similarities,where similarities were calculated based on users’rating vectors;2)the distribution statistics of user-user similarities,but with similarities derived from users represented by latent factors;and 3)latent-factor vector representations.Our experiments on the Movie Lens and Yahoo!Movie datasets demonstrate that user representations based on latent-factor vectors consistently facilitate the identification of more grey-sheep users when applying outlier detection methods.
文摘This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.
基金Supported by Key R&D Projects of Hunan Provincial Department of Science and Technology"Study on Key Modern Processing Techniques and Product Development of Huarong Mustard"(2023NK2039).
文摘A survey conducted on the premature bolting of Huarong large leaf mustard from 2018 to 2024 revealed that Huarong large leaf mustard sown in middle August was associated with a higher propensity for premature bolting. Furthermore, it was observed that the earlier being sown, the greater the rate of premature bolting when being sown prior to middle August. The rate of premature bolting observed in seedlings sown on August 8 was recorded at 35.6%. It was noted that as the age of the seedlings increased, the rate of premature bolting correspondingly increased. There were notable differences in the tolerance of various cultivars to elevated temperatures and prolonged sunlight exposure. For instance, cultivars such as Zhangjie 1 and Sichuan Shaguodi, which exhibit greater heat resistance, did not demonstrate premature bolting when sown in early August. The prolonged exposure to elevated temperatures, drought conditions, and extended periods of sunlight during the seedling stage of Huarong large leaf mustard, coupled with delayed irrigation and transplantation, contributed to the occurrence of premature bolting. The Huarong large leaf mustard, when been sown from late August to early September and transplanted at the appropriate time, exhibited normal growth and development, with no instances of premature bolting observed. It is advisable to select heat-resistant varieties, such as Zhangjie 1, prior to middle August. Huarong large leaf mustard should be sown in early to middle September. Additionally, it is essential to ensure centralized production and timely release of seeds, prompt transplantation and harvesting, and enhance the management of pests and diseases.
基金supported by the Key Research and Development Program of Zhejiang Province(No.2024C01071)the Natural Science Foundation of Zhejiang Province(No.LQ15F030006).
文摘Tag recommendation systems can significantly improve the accuracy of information retrieval by recommending relevant tag sets that align with user preferences and resource characteristics.However,metric learning methods often suffer from high sensitivity,leading to unstable recommendation results when facing adversarial samples generated through malicious user behavior.Adversarial training is considered to be an effective method for improving the robustness of tag recommendation systems and addressing adversarial samples.However,it still faces the challenge of overfitting.Although curriculum learning-based adversarial training somewhat mitigates this issue,challenges still exist,such as the lack of a quantitative standard for attack intensity and catastrophic forgetting.To address these challenges,we propose a Self-Paced Adversarial Metric Learning(SPAML)method.First,we employ a metric learning model to capture the deep distance relationships between normal samples.Then,we incorporate a self-paced adversarial training model,which dynamically adjusts the weights of adversarial samples,allowing the model to progressively learn from simpler to more complex adversarial samples.Finally,we jointly optimize the metric learning loss and self-paced adversarial training loss in an adversarial manner,enhancing the robustness and performance of tag recommendation tasks.Extensive experiments on the MovieLens and LastFm datasets demonstrate that SPAML achieves F1@3 and NDCG@3 scores of 22%and 32.7%on the MovieLens dataset,and 19.4%and 29%on the LastFm dataset,respectively,outperforming the most competitive baselines.Specifically,F1@3 improves by 4.7%and 6.8%,and NDCG@3 improves by 5.0%and 6.9%,respectively.
文摘The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality.
文摘`Introduction Open science is a set of principles and practices that aim to make scientific research accessible to everyone for the benefit of scientists and society.It includes sharing publications,data,software,and hardware widely,and ensuring that the production of scientific knowledge is inclusive,equitable,and sustainable.
文摘In the era of exponential growth of digital information,recommender algorithms are vital for helping users navigate vast data to find relevant items.Traditional approaches such as collaborative filtering and contentbasedmethods have limitations in capturing complex,multi-faceted relationships in large-scale,sparse datasets.Recent advances in Graph Neural Networks(GNNs)have significantly improved recommendation performance by modeling high-order connection patterns within user-item interaction networks.However,existing GNN-based models like LightGCN and NGCF focus primarily on single-type interactions and often overlook diverse semantic relationships,leading to reduced recommendation diversity and limited generalization.To address these challenges,this paper proposes a dual multi-relational graph neural network recommendation algorithm based on relational interactions.Our approach constructs two complementary graph structures:a User-Item Interaction Graph(UIIG),which explicitly models direct user behaviors such as clicks and purchases,and a Relational Association Graph(RAG),which uncovers latent associations based on user similarities and item attributes.The proposed Dual Multi-relational Graph Neural Network(DMGNN)features two parallel branches that perform multi-layer graph convolutional operations,followed by an adaptive fusion mechanism to effectively integrate information from both graphs.This design enhances the model’s capacity to capture diverse relationship types and complex relational patterns.Extensive experiments conducted on benchmark datasets—including MovieLens-1M,Amazon-Electronics,and Yelp—demonstrate thatDMGNN outperforms state-of-the-art baselines,achieving improvements of up to 12.3%in Precision,9.7%in Recall,and 11.5%in F1 score.Moreover,DMGNN significantly boosts recommendation diversity by 15.2%,balancing accuracy with exploration.These results highlight the effectiveness of leveraging hierarchical multi-relational information,offering a promising solution to the challenges of data sparsity and relation heterogeneity in recommendation systems.Our work advances the theoretical understanding of multi-relational graph modeling and presents practical insights for developing more personalized,diverse,and robust recommender systems.
基金funded by the Deanship of Scientific Research at Jouf University under Grant number DSR-2022-RG-0101。
文摘As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.
基金funded by the State Grid Hebei Electric Power Company(Project Number:KJ2023-093).
文摘Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios.
基金supported by a grant from the Natural Science Foundation of Zhejiang Province under Grant LY21F010016.
文摘Recently,many Sequential Recommendation methods adopt self-attention mechanisms to model user preferences.However,these methods tend to focus more on low-frequency information while neglecting highfrequency information,which makes them ineffective in balancing users’long-and short-term preferences.At the same time,manymethods overlook the potential of frequency domainmethods,ignoring their efficiency in processing frequency information.To overcome this limitation,we shift the focus to the combination of time and frequency domains and propose a novel Hybrid Time-Frequency Dual-Branch Transformer for Sequential Recommendation,namely HyTiFRec.Specifically,we design two hybrid filter modules:the learnable hybrid filter(LHF)and the window hybrid filter(WHF).We combine these with the Efficient Attention(EA)module to form the dual-branch structure to replace the self-attention components in Transformers.The EAmodule is used to extract sequential and global information.The LHF andWHF modules balance the proportion of different frequency bands,with LHF globally modulating the spectrum in the frequency domain and WHF retaining frequency components within specific local frequency bands.Furthermore,we use a time domain residual information addition operation in the hybrid filter module,which reduces information loss and further facilitates the hybrid of time-frequency methods.Extensive experiments on five widely-used real-world datasets show that our proposed method surpasses state-of-the-art methods.
基金funded by Soonchunhyang University,Grant Numbers 20241422BK21 FOUR(Fostering Outstanding Universities for Research,Grant Number 5199990914048).
文摘Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.
基金supported by the National Key R&D Program of China(2022YFE0200400).
文摘The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.
基金funded by the National Nature Sciences Foundation of China with Grant No.42250410321。
文摘Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%.