With the global advancement of the circular economy,integrating reverse osmosis(RO)or forward osmosis(FO)with anaerobic membrane bioreactor(AnMBR)offers a promising approach to simultaneously generate high-grade recla...With the global advancement of the circular economy,integrating reverse osmosis(RO)or forward osmosis(FO)with anaerobic membrane bioreactor(AnMBR)offers a promising approach to simultaneously generate high-grade reclaimed water,produce energy,and preserve valuable nutrients from municipal wastewater.However,the selectivity of these osmotic membranes towards ammonia nitrogen,a major component in municipal wastewater and anaerobic effluent,remains unsatisfactory due to its similar polarity and hydraulic radius to water molecules.Therefore,enhancing the ammonia nitrogen rejection of osmotic membranes is imperative to maximize the quality of reclaimed water and minimize the loss of ammonia nitrogen resources.Unfortunately,the current understanding of the mapping relationship between ammonia nitrogen transmembrane diffusion and the micro/nano-structure of osmotic membranes is not systematic,making precise optimization of the membranes challenging.Hence,this review comprehensively analyzed the diffusion behavior of ammonia nitrogen through osmotic membranes to lay the foundation for targeted regulation of membrane fine structure.Initially,the desire for ammonia/ammonium-rejecting membranes was highlighted by introducing current and promising osmotic membrane-based applications in municipal wastewater reclamation processes.Subsequently,the connection between the micro/nano-structure of osmotic membranes and the transmembrane diffusion behavior of ammonia nitrogen was explored by analyzing the effects of membrane characteristics on ammonia nitrogen transport using the DSPM-DE model.Finally,precise methods for modifying membranes to enhance ammonia nitrogen rejection were proposed.This review aims to offer theoretical insights guiding the development of RO and FO membranes with superior ammonia nitrogen rejection for efficient reclamation of municipal wastewater.展开更多
Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclam...Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclamation has become highlights in the past 10 years,and China is boosting land reclamation in mining areas.Disturbance characteristics vary from region to region,according to natural and geological conditions,coal mining area land reclamation was divided into 3 zones,which are eastern,western and southern.Reclamation strategies are focused on prime farmland protection in eastern and ecological restoration in western and southern zones,respectively.Several innovative reclamation technologies and theories for the past 10 years were introduced in this paper,including concurrent mining and reclamation,Yellow river sediments backfilling,self-reclamation,and topsoil alternatives in opencast mines.Besides,in the government regulation and legal system building respect,several important laws and regulations were issued and implemented in the past 5 years,promoting land reclamation management and supervision greatly.Land reclamation is and will still be one of the most important parts of coal industry in the future,and more efforts and funds are expected to get involved.展开更多
The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observatio...The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.展开更多
Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thic...Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thickness of covering soil and medium of covering soil to establish a self-regulating ecosystem, the thickness of covering soil of land reclamation for plants in different living forms by synusia structure of plant below-ground habitat and medium of covering soil by ecological factors of plant below-ground habitat were studied. Synusia structure of plant below-ground habitat was recognized through investigation on structure and root of plant community, and ecological factors were determined through soil profile investigation. The thickness and medium of covering soil of land reclamation for the tree, the shrub and the herb were proposed.展开更多
Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tida...Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tidal flat reclamation and environment protection becomes more and more outstanding. However, tidal flat reclamation should also follow the dynamic balance of total amount of tidal flat amount. The paper analyzed the history of reclamation and development of Jiangsu mud coast, and calculated the feasible rates of tidal flat reclamation on different stretches respectively, and pointed out that both the economic social benefits of reclamation and the natural erosion-accretion conditions of the coasts should be taken into consideration in deciding the intensity of tidal flat reclamation, so as to satisfy demands on both reclamation and protection of tidal flat resource.展开更多
The suitability evaluation of reclamation land was the premise and foundation for drawing up the land reclamation program.Taking Gouchang coal mine in Nayong County of Guizhou as an example,combining with the actual s...The suitability evaluation of reclamation land was the premise and foundation for drawing up the land reclamation program.Taking Gouchang coal mine in Nayong County of Guizhou as an example,combining with the actual situation which included the topography,the soil in the mine area and so on,the reclamation land in the mine area was divided into the living area,the production area,the coal yard,the temporary coal gangue yard and other subsidiary facilities district.It determined that the main destruction type in every unit was the occupation,and the destruction degree was severe.Meanwhile referring the suitability evaluation standards of cultivated field and woodland,it finally determined that the reclamation direction of evaluation land which was damaged seriously by the occupation in the mine area was all suitable to the cultivated field and woodland.展开更多
The process of exploiting mining land is the process of carbon increasing. The goal of top-level design of the mine land reclamation is not clear, which causes the reducing of carbon sink capacity. The mine land recla...The process of exploiting mining land is the process of carbon increasing. The goal of top-level design of the mine land reclamation is not clear, which causes the reducing of carbon sink capacity. The mine land reclamation program targeted poorly, which is bad for the control of overall carbon resource and emission. According to the requirements in regional division of encouraged, restricted and prohibited development, in various regions, multiple objectives were set as to maximize economic benefits and not to reduce the carbon sinks level of mine area, using Markov process optimization land-use structure, and based on the land type and characteristics, by floating changing, increasing or decreasing, land exploitation structure was adjusted to meet the need of low-carbon mine land exploitation.展开更多
Spartina alterniflora is a major invasive plant in the coastal tideland of China that has serious negative impact on local economy and ecology.This paper took Hugang New Town in Xiangshan County,Zhejiang Province for ...Spartina alterniflora is a major invasive plant in the coastal tideland of China that has serious negative impact on local economy and ecology.This paper took Hugang New Town in Xiangshan County,Zhejiang Province for example,concluded the method of controlling S.alterniflora by integrating mechanical mowing and hydraulic reclamation in view of the threatening expansion of this species and serious land shortage in the local area.Moreover,it explored the ecological planning method of reclamation area based on this method.In view of the ecological sensitivity of the reclamation area,urban ecological planning concept was introduced into both processes of the development:penetrative reclamation and urban planning.The reclamation project has to meet such requirements as site selection,scope,water surface ratio etc.,the planning ensures the ecological sustainability in functional orientation,spatial structure,green space system and development intensity.展开更多
A cross-pit system (CPS) could combine the excavation of coal and the reclamation of land together, thus it has been widely used in many countries. Based on a field experiment at Horse Creek mine in Illinois State of ...A cross-pit system (CPS) could combine the excavation of coal and the reclamation of land together, thus it has been widely used in many countries. Based on a field experiment at Horse Creek mine in Illinois State of the United States, this paper deeply studies the reclamation technique of surface mining by a CPS and comprehensively evaluates its reclamation effect. Problerns and improvements of the reclamation technique are also discussed in this paper.展开更多
Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
At different times over the past 30 years in Zhejiang Province, China, the coastal tidelands have been successively enclosed and reclaimed for agricultural land use. The purpose of this work was to evaluate whether la...At different times over the past 30 years in Zhejiang Province, China, the coastal tidelands have been successively enclosed and reclaimed for agricultural land use. The purpose of this work was to evaluate whether laboratory hyperspectral data might be used to estimate the physicochemical characteristics of these reclaimed saline soils. A coastal region of Shangyu City (Zhejiang Province), which was grouped into four subzones according to reclamation history, was used as the study area, and soil samples were collected in each subzone. Physicochemical analyses showed that the soils were characterized by high electrical conductivity and sand content with low organic matter; the longer the saline lands had been reclaimed, the lower were the electrical conductivity and sand content and the higher the organic matter content. These changing trends of soil chemical and physical properties were found in laboratory reflectance spectra of soil samples and their first-order derivative curves. Stepwise discriminant analysis (SDA) identified six salient spectral bands at 488, 530, 670, 880, 1400, and 1900 nm. Using derived discriminant functions for saline lands with different historical years of reclamation, classification revealed an overall accuracy from a self-test of 86.6% and from cross-validation of 89.3%. Therefore, as opposed to time-consuming field investigations, this study suggested that remotely sensed hyperspectral data could serve as a promising measure to assess the reclamation levels of coastal saline lands.展开更多
The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil samplin...The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil sampling points in the Fengxian Reclamation Area of the Changjiang (Yangtze) River Estuary,China in April 2009 and remotely sensed TM data in 2006,while by virtue of multivariate analysis of variance (MANOVA),geo-statistical analysis (GA),prin-cipal component analysis (PCA) and canonical correspondence analysis (CCA),it was concluded that:1) With the in-crease in reclamation time,soil moisture,soil salinity,soil electric conductivity and soil particle size tended to decline,yet soil organic matter tended to increase.Soil available phosphorous tended to increase in the early reclamation period,yet it tended to decline after about 49 years of reclamation.Soil nitrate nitrogen,soil ammonia nitrogen and pH changed slightly in different reclamation years.Soil physical and chemical properties reached a steady state after about 30 years of reclamation.2) According to the results of PCA analysis,the weighted value (0.97 in total) that represents soil nutrient factors (soil nitrate nitrogen,soil organic matter,soil available phosphorous,soil ammonia nitrogen,pH and soil particle size) were higher than the weighted value (0.48 in total) of soil limiting factors (soil salinity,soil elec-tric conductivity and soil moisture).The higher the F value is,the better the soil quality is.3) Different land use types play different roles in the soil function maturity process,with farmlands providing the best contribution.4) Soil physi-cal and chemical properties in the reclamation area were mainly influenced by reclamation time,and then by land use types.The correlation (0.1905) of the composite index of soil function (F) with reclamation time was greater than that with land use types (-0.1161).展开更多
A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimenta...A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg^-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation efficiency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg^-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation efficiency.展开更多
Extraction and analysis of the shoreline and land reclamation patterns are important for studies on topics such as the dynamics of coastal wetland ecological environments,transportation and exchange of material energy...Extraction and analysis of the shoreline and land reclamation patterns are important for studies on topics such as the dynamics of coastal wetland ecological environments,transportation and exchange of material energy in coastal regions,and recruitment of fishery resources.Spatial-temporal variations in the shoreline and land reclamation in the Bohai Sea were analyzed based on 49 Landsat images of 7 periods from 1985 to 2015.The following conclusions were drawn.(1)The extracted shoreline data based on visual interpretation had high precision,and the shoreline extraction errors could be controlled within the theoretical range.(2)Over the past 30 years,the shoreline of the Bohai Sea has exhibited an average rate of change of 188.47 m/a and an average accretion distance of 3.55×10^3 m toward the sea.The fastest rate of shoreline change occurred in Laizhou Bay(134.78 m/a),followed by Bohai Bay(128.20 m/a)and Liaodong Bay(61.69 m/a).(3)The average rate of reclamation was 3.25×10^4 ha/a in the Bohai Sea,where the total area of aquaculture land,unused land,and salt land exceeded 60%of the total reclamation area.(4)The geometric shape of the bay became increasingly complicated from year to year,and the geometric center of gravity of the bay moved rapidly toward the sea.In addition,the area of the bay showed a significant decreasing trend.Therefore,to protect the function and structure of the ecosystem in coastal regions,we must control the scale and rate of land reclamation in the future.展开更多
Suitability evaluation plays an important role in land reclamation because the choice of evaluation methods affects the accuracy and objectivity of the suitability evaluation results. Furthermore, it influences the de...Suitability evaluation plays an important role in land reclamation because the choice of evaluation methods affects the accuracy and objectivity of the suitability evaluation results. Furthermore, it influences the decision-making related to land reclamation. An improved method, which is called limit comprehensive conditions method, was developed after different suitability evaluation methods were studied. Based on this method, the reclaimed land of the Gaoqiao bauxite mining area was evaluated. The Gaoqiao mining area was divided into seven evaluation units that were evaluated respectively by selecting evaluation factors and establishing grade standards. The results show that the proposed method is more applicable and easier to handle. Moreover, its evaluation results are more scientific compared with the traditional evaluation methods. The improved method can be beneficial to the rapid monitoring and the effective management of reclaimed land in the opencast mine area.展开更多
Reclamation of salt-affected land plays an important role in mitigating the pressure of agricultural land due to competition with industry and construction in China. Drip irrigation was found to be an effective method...Reclamation of salt-affected land plays an important role in mitigating the pressure of agricultural land due to competition with industry and construction in China. Drip irrigation was found to be an effective method to reclaim salt-affected land. In order to improve the effect of reclamation and sustainability of salt-affected land production, a field experiment (with reclaimed 1-3 yr fields) was carried out to investigate changes in soil physical, chemical, and biological properties during the process of reclamation with cropping maize and drip irrigation. Results showed that soil bulk density in 0-20 cm soil layer decreased from 1.71 g·cm-3 in unreclaimed land to 1.44 g ·cm^-3 in reclaimed 3 yr fields, and saturated soil water content of 0-10 cm layer increased correspondingly from 20.3 to 30.2%. Both soil salinity and pH value in 0-40 cm soil layer dropped markedly after reclaiming 3 yr. Soil organic matter content reduced, while total nitrogen, total phosphorus, and total potassium all tended to increase after cropping and drip irrigation. The quantities of bacteria, actinomycete, and fungi in 0-40 cm soil layer all greatly increased with increase of reclaimed years, and they tended to distribute homogeneously in 0-40 cm soil profile. The urease activity and alkaline phosphatase activity in 0-40 cm soil layers were also enhanced, but the sucrase activity was not greatly changed. These results indicated that after crop cultivation and drip irrigation, soil physical environment and nutrients status were both improved. This was benefit for microorganism's activity and plant's growth.展开更多
Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests o...Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests of prime agricultural lands, food security, and regional economic development. The subsided lands must be rehabilitated soon after mining to be agriculturally productive to minimize loss of farmland. Similarly, precious water resources must also be managed during and after mining to protect this natural resource. Toward these goals, the concept of "Concurrent mining and subsidence reclamation (CMR)" was proposed by Professor Hu of the China University of Mining and Technology, Beijing (CUMTB). Over the last two decades CMR concepts have evolved and successfully applied in the field in different parts of China. This innovative technology has increased available farmland during the mining process, and provided better land protection and food security in mining areas even with high groundwater table. The technology has been used in 5 of the 14 large coal bases in China. This paper describes the technology concepts, design and guiding principles for planning with two case studies from different regions to enhance its application both in China and in other countries.展开更多
In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels...In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels are reassessed.A two-dimensional numerical model based on an advanced circulation model(ADCIRC)was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay.The results show that the shoreline relocation and topographic change had opposite effects on tidal heights.Shoreline relocation decreased the tidal amplitude,while siltation caused topographic change and increased the amplitude.Such variations of the amplitude were significant in the top areas of Sanmen Bay.Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level.Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m.The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased.The maximum surge level rise occurred in the path of northwest landing typhoons,which exceeded 0.24 m at the top of the bay.The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.展开更多
Coal gangue is the most used filling material during reclamation of areas suffering subsidence from min- ing. Main trace element levels (F, As, Hg, and Pb) in shallow groundwater in the reclamation area may be affecte...Coal gangue is the most used filling material during reclamation of areas suffering subsidence from min- ing. Main trace element levels (F, As, Hg, and Pb) in shallow groundwater in the reclamation area may be affected by leaching from the gangue. This can has an impact on the application of the water for agricul- tural irrigation or use as drinking water. Therefore, it is of great significance to understand the effect coal gangue has on the shallow groundwater of a reclaimed area. We studied the effect of coal gangue on fluo- rine, arsenic, mercury, and lead levels in the shallow groundwater of a reclamation area by testing the water and the coal gangue. One well near the reclamation area was used as a control well and element levels in water from this well and from the soil next to the well were also measured. The results show that the levels of these elements are increasing in the reclamation area over time. The increase in fluorine, arsenic, mercury, and lead in monitor wells varies from 7.42% to 8.26%, from 7.13% to 7.90%, from 4.85% to 6.48%, and from 4.69% to 6.42%, respectively. Fluorine and arsenic levels are lower in monitor wells than in the control water. The other elements are found in greater concentration than in the control. The Nemerow index also indicates that the shallow groundwater in the reclamation area I is moderately affected by the back-filling coal gangue, while the shallow groundwater in the reclamation area II and III are slightly affected by the back-filling coal gangue. This shallow groundwater could be used for agri- cultural irrigation or for drinking.展开更多
The reclamation and reuse of wastewater is one of the possible ways to relieve the serious fresh water resource crisis in China. Efficient reclamation treatment technologies ensure the safe reuse of reclaimed water. I...The reclamation and reuse of wastewater is one of the possible ways to relieve the serious fresh water resource crisis in China. Efficient reclamation treatment technologies ensure the safe reuse of reclaimed water. In order to screen out and evaluate technologies appropriate for reclamation treatment, a great deal of efforts have been brought to bear. In the present study, a toxicity-based method including a Photobacterium phosphoreum test for acute toxicity and SOS/umu test for genotoxicity, accompanied by the traditional physicochemical parameters DOC (dissolved organic carbon) and UV254 (absorbance at 254 nm), was used to measure the treatment performance of different reclamation processes, including the anaerobic-anoxic-oxic biological process (A^2O) and subsequent physical/chemical reclamation processes (ultrafiltration, ozonation, chlorination). It was found that for the secondary effluent after the Aao process, both the toxicity and physicochemical indices had greatly decreased compared with those of the influent. However, chemical reclamation processes such as ozonation and chlorination could possibly raise toxicity levels again. Fortunately, the toxicity elevation could be avoided by optimizing the ozone dosage and using activated carbon after ozonation. It was noted that by increasing the ozone dosage to 10 mg/L and employing activated carbon with more than 10 min hydraulic retention time, toxicity elevation was controlled. Furthermore, it was shown that pre-ozonation before activated carbon and chlorination played an important role in removing organic compounds and reducing the toxicity formation potential. The toxicity test could serve as a valuable tool to evaluate the performance of reclamation processes.展开更多
基金supported by National Natural Science Foundation of China(No.52200051)Harbin Institute of Technology(No.HC202236)Outstanding Youth Fund of Heilongjiang Natural Science Foundation(No.YQ2023E021)。
文摘With the global advancement of the circular economy,integrating reverse osmosis(RO)or forward osmosis(FO)with anaerobic membrane bioreactor(AnMBR)offers a promising approach to simultaneously generate high-grade reclaimed water,produce energy,and preserve valuable nutrients from municipal wastewater.However,the selectivity of these osmotic membranes towards ammonia nitrogen,a major component in municipal wastewater and anaerobic effluent,remains unsatisfactory due to its similar polarity and hydraulic radius to water molecules.Therefore,enhancing the ammonia nitrogen rejection of osmotic membranes is imperative to maximize the quality of reclaimed water and minimize the loss of ammonia nitrogen resources.Unfortunately,the current understanding of the mapping relationship between ammonia nitrogen transmembrane diffusion and the micro/nano-structure of osmotic membranes is not systematic,making precise optimization of the membranes challenging.Hence,this review comprehensively analyzed the diffusion behavior of ammonia nitrogen through osmotic membranes to lay the foundation for targeted regulation of membrane fine structure.Initially,the desire for ammonia/ammonium-rejecting membranes was highlighted by introducing current and promising osmotic membrane-based applications in municipal wastewater reclamation processes.Subsequently,the connection between the micro/nano-structure of osmotic membranes and the transmembrane diffusion behavior of ammonia nitrogen was explored by analyzing the effects of membrane characteristics on ammonia nitrogen transport using the DSPM-DE model.Finally,precise methods for modifying membranes to enhance ammonia nitrogen rejection were proposed.This review aims to offer theoretical insights guiding the development of RO and FO membranes with superior ammonia nitrogen rejection for efficient reclamation of municipal wastewater.
文摘Coal mining disturbed land is the main sources of land reclamation in China.With the rapid increase of economy and coal production,more and more land has been disturbed by construction and coal mining;thus,land reclamation has become highlights in the past 10 years,and China is boosting land reclamation in mining areas.Disturbance characteristics vary from region to region,according to natural and geological conditions,coal mining area land reclamation was divided into 3 zones,which are eastern,western and southern.Reclamation strategies are focused on prime farmland protection in eastern and ecological restoration in western and southern zones,respectively.Several innovative reclamation technologies and theories for the past 10 years were introduced in this paper,including concurrent mining and reclamation,Yellow river sediments backfilling,self-reclamation,and topsoil alternatives in opencast mines.Besides,in the government regulation and legal system building respect,several important laws and regulations were issued and implemented in the past 5 years,promoting land reclamation management and supervision greatly.Land reclamation is and will still be one of the most important parts of coal industry in the future,and more efforts and funds are expected to get involved.
文摘The two-dimensional hydrodynamic model, MIKE21, is applied to simulate the tidal currents and sediment concentration in the radial sand ridges of the South Yellow Sea. Results are in accordance with in situ observations. Then the variations of tidal currents and suspended sediment concentration caused by reclamation and artificial islands projects are simulated. The results show that the impacts are limited around the project areas. After the projects, the fan-shaped, Jianggang centered tidal current pattern would be replaced by a pattern which is formed by two tidal paths. One locates at the Xiyang channel in north-south direction, and the other locates at the Huangshayang channel in east-west direction. The reclamation of Tiaozini separates the waters into south portion and north portion. The changes of sediment concentrations coincide with those of currents. Both the sediment concentrations and tidal currents increase at the northwest of Dongsha and the south of Gaoni, while both decrease at the north and south of Tiaozini, and the east and southwest of Dongsha.
文摘Land reclamation is a process of ecosystem reconstruction, for which it is very important to keep co-adaptation between plants and the below ground habitat. In order to keep the co-adaptation among plant species, thickness of covering soil and medium of covering soil to establish a self-regulating ecosystem, the thickness of covering soil of land reclamation for plants in different living forms by synusia structure of plant below-ground habitat and medium of covering soil by ecological factors of plant below-ground habitat were studied. Synusia structure of plant below-ground habitat was recognized through investigation on structure and root of plant community, and ecological factors were determined through soil profile investigation. The thickness and medium of covering soil of land reclamation for the tree, the shrub and the herb were proposed.
文摘Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tidal flat reclamation and environment protection becomes more and more outstanding. However, tidal flat reclamation should also follow the dynamic balance of total amount of tidal flat amount. The paper analyzed the history of reclamation and development of Jiangsu mud coast, and calculated the feasible rates of tidal flat reclamation on different stretches respectively, and pointed out that both the economic social benefits of reclamation and the natural erosion-accretion conditions of the coasts should be taken into consideration in deciding the intensity of tidal flat reclamation, so as to satisfy demands on both reclamation and protection of tidal flat resource.
基金Supported by Guizhou Science and Technology Fund(Guizhou Science and Technology Fund J Word LKS[2009]Number20)
文摘The suitability evaluation of reclamation land was the premise and foundation for drawing up the land reclamation program.Taking Gouchang coal mine in Nayong County of Guizhou as an example,combining with the actual situation which included the topography,the soil in the mine area and so on,the reclamation land in the mine area was divided into the living area,the production area,the coal yard,the temporary coal gangue yard and other subsidiary facilities district.It determined that the main destruction type in every unit was the occupation,and the destruction degree was severe.Meanwhile referring the suitability evaluation standards of cultivated field and woodland,it finally determined that the reclamation direction of evaluation land which was damaged seriously by the occupation in the mine area was all suitable to the cultivated field and woodland.
基金Supported by Business Public Welfare Fund Project of Ministry of Land and Resources,China(201011003)Soft Science Project of Science and Technology Department of Hebei Province,China(13456107D)
文摘The process of exploiting mining land is the process of carbon increasing. The goal of top-level design of the mine land reclamation is not clear, which causes the reducing of carbon sink capacity. The mine land reclamation program targeted poorly, which is bad for the control of overall carbon resource and emission. According to the requirements in regional division of encouraged, restricted and prohibited development, in various regions, multiple objectives were set as to maximize economic benefits and not to reduce the carbon sinks level of mine area, using Markov process optimization land-use structure, and based on the land type and characteristics, by floating changing, increasing or decreasing, land exploitation structure was adjusted to meet the need of low-carbon mine land exploitation.
基金Sponsored by Science and Technology Program of Ministry of Housing and Urban-Rural Construction(2015R2-061)Youth Science Foundation of Nature Science Foundation of China(41201165)+1 种基金National Science and Technology Support Plan(2015BAL02B00)Doctoral Scientific Fund Project of the Ministry of Education of China(20130101110029)
文摘Spartina alterniflora is a major invasive plant in the coastal tideland of China that has serious negative impact on local economy and ecology.This paper took Hugang New Town in Xiangshan County,Zhejiang Province for example,concluded the method of controlling S.alterniflora by integrating mechanical mowing and hydraulic reclamation in view of the threatening expansion of this species and serious land shortage in the local area.Moreover,it explored the ecological planning method of reclamation area based on this method.In view of the ecological sensitivity of the reclamation area,urban ecological planning concept was introduced into both processes of the development:penetrative reclamation and urban planning.The reclamation project has to meet such requirements as site selection,scope,water surface ratio etc.,the planning ensures the ecological sustainability in functional orientation,spatial structure,green space system and development intensity.
文摘A cross-pit system (CPS) could combine the excavation of coal and the reclamation of land together, thus it has been widely used in many countries. Based on a field experiment at Horse Creek mine in Illinois State of the United States, this paper deeply studies the reclamation technique of surface mining by a CPS and comprehensively evaluates its reclamation effect. Problerns and improvements of the reclamation technique are also discussed in this paper.
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
基金Project supported by the German Federal Ministry for Research and Education, Germany (No. AZ39742)the National Natural Science Foundation of China (No. 40571066).
文摘At different times over the past 30 years in Zhejiang Province, China, the coastal tidelands have been successively enclosed and reclaimed for agricultural land use. The purpose of this work was to evaluate whether laboratory hyperspectral data might be used to estimate the physicochemical characteristics of these reclaimed saline soils. A coastal region of Shangyu City (Zhejiang Province), which was grouped into four subzones according to reclamation history, was used as the study area, and soil samples were collected in each subzone. Physicochemical analyses showed that the soils were characterized by high electrical conductivity and sand content with low organic matter; the longer the saline lands had been reclaimed, the lower were the electrical conductivity and sand content and the higher the organic matter content. These changing trends of soil chemical and physical properties were found in laboratory reflectance spectra of soil samples and their first-order derivative curves. Stepwise discriminant analysis (SDA) identified six salient spectral bands at 488, 530, 670, 880, 1400, and 1900 nm. Using derived discriminant functions for saline lands with different historical years of reclamation, classification revealed an overall accuracy from a self-test of 86.6% and from cross-validation of 89.3%. Therefore, as opposed to time-consuming field investigations, this study suggested that remotely sensed hyperspectral data could serve as a promising measure to assess the reclamation levels of coastal saline lands.
基金Under the auspices of Ministry of Education,China (No.108148)State Key Laboratory of Urban and Regional Ecology (No.SKLURE2010-2-2)+2 种基金National Basic Research Program of China (No.2010CB951203)Key Research Program of Shanghai Science & Technology (No.08231200700,08231200702)111 Project,Ministry of Education,China (No.B08022)
文摘The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil sampling points in the Fengxian Reclamation Area of the Changjiang (Yangtze) River Estuary,China in April 2009 and remotely sensed TM data in 2006,while by virtue of multivariate analysis of variance (MANOVA),geo-statistical analysis (GA),prin-cipal component analysis (PCA) and canonical correspondence analysis (CCA),it was concluded that:1) With the in-crease in reclamation time,soil moisture,soil salinity,soil electric conductivity and soil particle size tended to decline,yet soil organic matter tended to increase.Soil available phosphorous tended to increase in the early reclamation period,yet it tended to decline after about 49 years of reclamation.Soil nitrate nitrogen,soil ammonia nitrogen and pH changed slightly in different reclamation years.Soil physical and chemical properties reached a steady state after about 30 years of reclamation.2) According to the results of PCA analysis,the weighted value (0.97 in total) that represents soil nutrient factors (soil nitrate nitrogen,soil organic matter,soil available phosphorous,soil ammonia nitrogen,pH and soil particle size) were higher than the weighted value (0.48 in total) of soil limiting factors (soil salinity,soil elec-tric conductivity and soil moisture).The higher the F value is,the better the soil quality is.3) Different land use types play different roles in the soil function maturity process,with farmlands providing the best contribution.4) Soil physi-cal and chemical properties in the reclamation area were mainly influenced by reclamation time,and then by land use types.The correlation (0.1905) of the composite index of soil function (F) with reclamation time was greater than that with land use types (-0.1161).
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of Chinathe United States-Israel Binational Agricultural Research and Development Fund (No.452420)the Program for Changjiang Scholars and Innovative Research Team in University, China (No.IRT0657)
文摘A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg^-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation efficiency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg^-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation efficiency.
基金The National Basic Research Program(973 Program)of China,No.2015CB453303The Aoshan Scientific and Technical Innovation Program,No.2015ASKJ02-05+3 种基金The Special Fund of the Taishan Scholar Projectthe “Aoshan Talent” ProjectLaboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and Technology(Qingdao),No.2017ASTCP-ES07
文摘Extraction and analysis of the shoreline and land reclamation patterns are important for studies on topics such as the dynamics of coastal wetland ecological environments,transportation and exchange of material energy in coastal regions,and recruitment of fishery resources.Spatial-temporal variations in the shoreline and land reclamation in the Bohai Sea were analyzed based on 49 Landsat images of 7 periods from 1985 to 2015.The following conclusions were drawn.(1)The extracted shoreline data based on visual interpretation had high precision,and the shoreline extraction errors could be controlled within the theoretical range.(2)Over the past 30 years,the shoreline of the Bohai Sea has exhibited an average rate of change of 188.47 m/a and an average accretion distance of 3.55×10^3 m toward the sea.The fastest rate of shoreline change occurred in Laizhou Bay(134.78 m/a),followed by Bohai Bay(128.20 m/a)and Liaodong Bay(61.69 m/a).(3)The average rate of reclamation was 3.25×10^4 ha/a in the Bohai Sea,where the total area of aquaculture land,unused land,and salt land exceeded 60%of the total reclamation area.(4)The geometric shape of the bay became increasingly complicated from year to year,and the geometric center of gravity of the bay moved rapidly toward the sea.In addition,the area of the bay showed a significant decreasing trend.Therefore,to protect the function and structure of the ecosystem in coastal regions,we must control the scale and rate of land reclamation in the future.
基金Project(40901217)supported by the National Natural Science Foundation of China
文摘Suitability evaluation plays an important role in land reclamation because the choice of evaluation methods affects the accuracy and objectivity of the suitability evaluation results. Furthermore, it influences the decision-making related to land reclamation. An improved method, which is called limit comprehensive conditions method, was developed after different suitability evaluation methods were studied. Based on this method, the reclaimed land of the Gaoqiao bauxite mining area was evaluated. The Gaoqiao mining area was divided into seven evaluation units that were evaluated respectively by selecting evaluation factors and establishing grade standards. The results show that the proposed method is more applicable and easier to handle. Moreover, its evaluation results are more scientific compared with the traditional evaluation methods. The improved method can be beneficial to the rapid monitoring and the effective management of reclaimed land in the opencast mine area.
基金supported by the Chinese Academy of Sciences Action Plan for the Development of Western China (KZCX2-XB2-13)the Chinese Academy of Sciences Knowledge Innovation Project(KSCX2-YW-N-080)the Project for 100 Outstanding Young Scientists supported by Chinese Academy of Sciences
文摘Reclamation of salt-affected land plays an important role in mitigating the pressure of agricultural land due to competition with industry and construction in China. Drip irrigation was found to be an effective method to reclaim salt-affected land. In order to improve the effect of reclamation and sustainability of salt-affected land production, a field experiment (with reclaimed 1-3 yr fields) was carried out to investigate changes in soil physical, chemical, and biological properties during the process of reclamation with cropping maize and drip irrigation. Results showed that soil bulk density in 0-20 cm soil layer decreased from 1.71 g·cm-3 in unreclaimed land to 1.44 g ·cm^-3 in reclaimed 3 yr fields, and saturated soil water content of 0-10 cm layer increased correspondingly from 20.3 to 30.2%. Both soil salinity and pH value in 0-40 cm soil layer dropped markedly after reclaiming 3 yr. Soil organic matter content reduced, while total nitrogen, total phosphorus, and total potassium all tended to increase after cropping and drip irrigation. The quantities of bacteria, actinomycete, and fungi in 0-40 cm soil layer all greatly increased with increase of reclaimed years, and they tended to distribute homogeneously in 0-40 cm soil profile. The urease activity and alkaline phosphatase activity in 0-40 cm soil layers were also enhanced, but the sucrase activity was not greatly changed. These results indicated that after crop cultivation and drip irrigation, soil physical environment and nutrients status were both improved. This was benefit for microorganism's activity and plant's growth.
文摘Large scale underground mining of coal resources in China using longwall mining has resulted in ecological and environment problems, including surface subsidence that is considered serious due to competing interests of prime agricultural lands, food security, and regional economic development. The subsided lands must be rehabilitated soon after mining to be agriculturally productive to minimize loss of farmland. Similarly, precious water resources must also be managed during and after mining to protect this natural resource. Toward these goals, the concept of "Concurrent mining and subsidence reclamation (CMR)" was proposed by Professor Hu of the China University of Mining and Technology, Beijing (CUMTB). Over the last two decades CMR concepts have evolved and successfully applied in the field in different parts of China. This innovative technology has increased available farmland during the mining process, and provided better land protection and food security in mining areas even with high groundwater table. The technology has been used in 5 of the 14 large coal bases in China. This paper describes the technology concepts, design and guiding principles for planning with two case studies from different regions to enhance its application both in China and in other countries.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFB1501901-03)the National Natural Science Foundation of China(No.41776016)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060202)
文摘In recent years,fast economic development demands for more land use and thus many reclamation projects are initiated around the Sanmen Bay,Zhejiang,SE China in the East China Sea,for which tidal and storm surge levels are reassessed.A two-dimensional numerical model based on an advanced circulation model(ADCIRC)was applied to evaluate the impact of reclamation projects on tidal and storm surge levels in the bay.The results show that the shoreline relocation and topographic change had opposite effects on tidal heights.Shoreline relocation decreased the tidal amplitude,while siltation caused topographic change and increased the amplitude.Such variations of the amplitude were significant in the top areas of Sanmen Bay.Three types of typhoon paths were selected for a case study to investigate the impacts of shoreline relocation and topographic change on storm surge level.Results show that the maximum increase in storm surge level due to shoreline relocation was less than 0.06 m.The rise of peak surge level due to the change of topography was significant and the peak surge level rose when siltation increased.The maximum surge level rise occurred in the path of northwest landing typhoons,which exceeded 0.24 m at the top of the bay.The rise in peak surge level can potentially lead to severe damages and losses in Sanmen Bay and more attention needs to be paid to this problem of shoreline change in the future.
基金The project was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Coal gangue is the most used filling material during reclamation of areas suffering subsidence from min- ing. Main trace element levels (F, As, Hg, and Pb) in shallow groundwater in the reclamation area may be affected by leaching from the gangue. This can has an impact on the application of the water for agricul- tural irrigation or use as drinking water. Therefore, it is of great significance to understand the effect coal gangue has on the shallow groundwater of a reclaimed area. We studied the effect of coal gangue on fluo- rine, arsenic, mercury, and lead levels in the shallow groundwater of a reclamation area by testing the water and the coal gangue. One well near the reclamation area was used as a control well and element levels in water from this well and from the soil next to the well were also measured. The results show that the levels of these elements are increasing in the reclamation area over time. The increase in fluorine, arsenic, mercury, and lead in monitor wells varies from 7.42% to 8.26%, from 7.13% to 7.90%, from 4.85% to 6.48%, and from 4.69% to 6.42%, respectively. Fluorine and arsenic levels are lower in monitor wells than in the control water. The other elements are found in greater concentration than in the control. The Nemerow index also indicates that the shallow groundwater in the reclamation area I is moderately affected by the back-filling coal gangue, while the shallow groundwater in the reclamation area II and III are slightly affected by the back-filling coal gangue. This shallow groundwater could be used for agri- cultural irrigation or for drinking.
基金supported by the National High Technology Research and Development Program (863) of China(No. 2008AA062502,2009AA063901)the National Natural Science Foundation of China (No. 20877090,50938004)
文摘The reclamation and reuse of wastewater is one of the possible ways to relieve the serious fresh water resource crisis in China. Efficient reclamation treatment technologies ensure the safe reuse of reclaimed water. In order to screen out and evaluate technologies appropriate for reclamation treatment, a great deal of efforts have been brought to bear. In the present study, a toxicity-based method including a Photobacterium phosphoreum test for acute toxicity and SOS/umu test for genotoxicity, accompanied by the traditional physicochemical parameters DOC (dissolved organic carbon) and UV254 (absorbance at 254 nm), was used to measure the treatment performance of different reclamation processes, including the anaerobic-anoxic-oxic biological process (A^2O) and subsequent physical/chemical reclamation processes (ultrafiltration, ozonation, chlorination). It was found that for the secondary effluent after the Aao process, both the toxicity and physicochemical indices had greatly decreased compared with those of the influent. However, chemical reclamation processes such as ozonation and chlorination could possibly raise toxicity levels again. Fortunately, the toxicity elevation could be avoided by optimizing the ozone dosage and using activated carbon after ozonation. It was noted that by increasing the ozone dosage to 10 mg/L and employing activated carbon with more than 10 min hydraulic retention time, toxicity elevation was controlled. Furthermore, it was shown that pre-ozonation before activated carbon and chlorination played an important role in removing organic compounds and reducing the toxicity formation potential. The toxicity test could serve as a valuable tool to evaluate the performance of reclamation processes.