In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be r...In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be recharged in high efficiency.With equal heat transfer capabilities of exhaust-air coil and borehole collector,the system provides a maximum overall efficiency.However,due to ground infinite capacity,the optimum brine flow rate is different from conventional two-exchanger system.The recharging system provides two peak overall efficiencies when the capacity ratio Cr=5 for laminar flow and Cr=15 for turbulent flow respectively.The overall efficiency is independent of exhaust-air temperature and undisturbed ground temperature,although the fluid properties depend on temperature.In practical system lower ethyl percentage brine should be chosen if the freezing point meets the system request,which can provide a higher overall efficiency.展开更多
A new method for recharging active medical implant(AMI)in vitro based on incoherent light source and results of the simulation experiments are proposed.Firstly,the models of the AMI recharging method based on incohe...A new method for recharging active medical implant(AMI)in vitro based on incoherent light source and results of the simulation experiments are proposed.Firstly,the models of the AMI recharging method based on incoherent light source in vitro are developed,which include the models of an incoherent light source and skin tissue.Secondly,simulation experiments of the incoherent light source of the AMI recharging process in vitro based on the Monte Carlo(MC)method are carried out.Finally,absorbed fractions of different layers and distributions of density along x axis of the tissue model and other important conclusions have been achieved.展开更多
Water scarcity is a serious problem throughout the world for both urban & rural community. Urban centers in India are facing an ironical situation of water scarcity today. This paper includes an Analytical solutio...Water scarcity is a serious problem throughout the world for both urban & rural community. Urban centers in India are facing an ironical situation of water scarcity today. This paper includes an Analytical solution, Numerical modeling, Empirical approaches, In-situ test results to predict recharge (rate) mound of the ground-water and capacity of recharge well which is essential for the proper management of suitable artificial ground-water recharge systems to maintain water balance and stop salt water intrusion. Authors have derived analytical equation for predicting growth as well as decline of the ground-water mound depending on the intensity of recharge rate qr with different value of permeability k, depth of pervious strata H and diameter of well d, also studying the effects of variation in the geotechnical parameters on water-table fluctuations. In this paper to study the impact of numerical modeling using quadratic equation for unconfined aquifer base on rainfall intensity P and a change in saturated thickness H with variation in piezometric level. Empirical approaches are for evaluation of correct value of k of an undercharged unconfined aquifer with drawdown s0, influence zone L, recharge rate qr. In-situ test results give actual correlation between value of recharging rate of well and permeability on field. Authors have verified recharging rate of installed well from all approaches. A result obtained from the various field case studies gives the validation of the derived equation. Scientific quality measures of aquifer water are also recorded.展开更多
RFID tags are used for different purposes. One of the major problems to be addressed, particularly for monitoring purposes, is their limited power autonomy. Tags must perform different tasks with limited power consump...RFID tags are used for different purposes. One of the major problems to be addressed, particularly for monitoring purposes, is their limited power autonomy. Tags must perform different tasks with limited power consumption and their batteries capacities are often too low, even if low power consumption techniques are implemented. In these operational situations tags should be kept in operation for long periods of time and the common solution is to go directly where they are installed and recharge them manually or change their batteries;alternatively, when possible, small photovoltaic (PV) panels may be adopted. This paper proposes a feasibility analysis of how it is possible to recharge a multipurpose RFID tag using a UAV (Unmanned Aerial Vehicle), which is programmed to go above the tags and recharge them. This possibility is analyzed from an energetic point of view assuming to recharge a Wireless Sensor Network (WSN) using a common commercial UAV adequately instrumented using the wireless power transfer technique.展开更多
Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. How...Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. However,achieving sensitivities exceeding 1000 kPa^(-1) while maintaining a pressure working range over 100 kPa is still challenging because of the limited intrinsic properties of soft matrix materials. Here, we report a magnetic field-induced porous elastomer with micropillar arrays(MPAs) as sensing materials and a well-patterned nickel fabric as an electrode. The developed sensor exhibits an ultrahigh sensitivity of 10,268 kPa^(-1)(0.6–170 kPa) with a minimum detection pressure of 0.25 Pa and a fast response time of 3 ms because of the unique structure of the MPAs and the textured morphology of the electrode. The porous elastomer provides an extended working range of up to 500 kPa with long-time durability. The sophisticated sensor system coupled with an integrated wireless recharging system comprising a flexible supercapacitor and inductive coils for transmission achieves excellent performance. Thus, a diverse range of practical applications requiring a low-to-high pressure range sensing can be developed. Our strategy, which combines a microstructured high-performance sensor device with a wireless recharging system, provides a basis for creating next-generation flexible electronics.展开更多
Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme...Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the co...Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the continuous increase in the cost of LIBs.Along with the rapid development of electric transportation,it has become inevitable to trigger a new round of competition in alternative energy storage systems.Some monovalent rechargeable metal ion batteries(sodium ion batteries(SIBs)and potassium ion batteries(PIBs),etc.)and multi-valent rechargeable metal-ion batteries(magnesium ion batteries(MIBs),calcium ion batteries(CIBs),zinc ion batteries(ZIBs),and aluminum ion batteries(AIBs),etc.)are potential candidates,which can replace LIBs in some of the scenarios to alleviate the pressure on supply.The cathode material plays a crucial role in determining the battery capacity.Transition metal compounds dominated by layered transition metal oxides as key cathode materials for secondary batteries play an important role in the advancement of various battery energy storage systems.In summary,this manuscript aims to review and summarize the research progress on transition metal compounds used as cathodes in different metal ion batteries,with the aim of providing valuable guidance for the exploration and design of high-performance integrated battery systems.展开更多
Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used...Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms.展开更多
Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly s...Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly software tool developed to estimate natural groundwater recharge using two widely adopted approaches:the Water Balance(WB)method and Water Table Fluctuation(WTF)method.In the WB approach,the catchment area is divided into seven land-use categories,each representing distinct recharge characteristics.The tool includes eighteen different reference Evapotranspiration(ET0)estimation methods,accommodating varying levels of climatic input data availability.Additional required inputs include crop coefficients for major crops and Curve Numbers(CN)for specific land-use types.The WTF approach considers up to three aquifer layers with different specific yields(for unconfined aquifer)or storage coeffi-cient(for confined aquifer).It also takes into account groundwater withdrawal(draft)and lateral water movement within or outside the aquifer system.M-RechargeCal is process-based and does not require cali-bration.Its performance was evaluated using six datasets from humid-subtropical environments,demon-2 strating reliable results(R=0.867,r=0.93,RE=10.6%,PMARE=9.8,ENS=0.93).The model can be applied to defined hydrological or hydrogeological units such as watersheds,aquifers,or catchments,and can be used to assess the impacts of land-use/land-cover changes on hydrological components.However,it has not yet been tested in arid regions.M-RechargeCal provides modelers and planners with a practical,accessible tool for recharge estimation to support groundwater modeling and water resource planning.The software is available free of charge and can be downloaded from the author's institutional website or obtained by contacting the author via email.展开更多
Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic ap...Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic applications recently.Due to the catalytic deficiency of neutral carbon atoms,the usage of single lignocellulosic-based carbon materials in electrocatalysis involving energy storage and conversion presents unsatisfactory applicability.However,atomic-level modulation of lignocellulose-based carbon materials can optimize the electronic structures,charge separation,transfer processes,and so forth,which results in substantially enhanced electrocatalytic performance of carbon-based catalysts.This paper reviews the recent advances in the rational design of lignocellulosic-based carbon materials as electrocatalysts from an atomic-level perspective,such as self/external heteroatom doping and metal modification.Then,through systematic discussion of the design principles and reaction mechanisms of the catalysts,the applications of the prepared lignocellulosic-based catalysts in rechargeable batteries and electrocatalysis are reviewed.Finally,the challenges in improving the catalytic performance of lignocellulosic-based carbon materials as electrocatalysts and the prospects in diverse applications are reviewed.This review contributes to the synthesis strategy of lignocellulose-based carbon electrocatalysts via atomic-level modulation,which in turn promotes the lignocellulose valorization for energy storage and conversion.展开更多
Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water s...Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water supplies become critically low especially during early summers and dry periods to sustain agriculture and livelihoods in the region. In the present study, groundwater prospects were investigated using vertical electrical sounding(VES) technique to supplement irrigation and domestic water supplies in the Upper Indus Basin of Pakistan. The findings of the study revealed groundwater potential of about 7 km~3 in the aquifer, the yield of which may vary depending on the geological setup and characteristics of the subsurface lithology. The mean thickness of the aquifer was estimated to be approximately 11 m across the surveyed area, which spans about 2,093 km~2. Areas with favorable aquifer potential(exceeding 30 m in thickness) account for only approximately 8.4% of the region, while moderate potential(20–30 m thickness) is present in about 19.8% of the surveyed area. Groundwater occurrence is limited in the elevated northeastern regions due to the prevalence of unfractured igneous and metamorphic rock formations. However, in-depth hydrogeological investigations and hydro-dynamics research would be helpful in understanding precise nature of the aquifer system as well as links between various recharge components of the groundwater in the region. An integrated water resource management approach would be beneficial for sustaining agriculture and livelihoods in this diverse mountainous region in future.展开更多
Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage ...Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage in structures such as dams,tunnels,canals,and pipelines.By utilizing a few easily measurable parameters,engineers can employ these formulas to generate preliminary leakage rate estimates before proceeding with more detailed analyses.In this study,a physical model was developed,and a series of experiments were conducted,considering variables such as inflow rate,materials constituting the unsaturated medium,and variations in infiltration trench depth and width.As a result,a novel artificial recharge method was introduced,and an empirical equation,Q_(out)=0.0066×D_(50)^(0.64)×L×P^(0.36),was proposed to estimate the infiltration capacity of the trench.This equation incorporates factors such as the wetted perimeter,mean soil particle diameter,trench length,and a coefficient.A comparative analysis between the observed data from nine Iranian earthen canals and the values calculated using the proposed equation revealed an average relative error of 15%between the two datasets.In addition,the Pearson correlation coefficient was determined to be 0.981 and the Root Mean Square Error(RMSE)was 0.381,demonstrating the strong predictive performance of the equation.The parameters considered in the proposed equation allow for its application across diverse regions.Given its accurate performance,this equation provides a reliable initial estimate of the leakage rate,thereby helping to reduce costs and save time.展开更多
This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)perio...This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community.展开更多
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC chan...Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion.展开更多
Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under di...Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization.展开更多
Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction poten...Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries.展开更多
Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of re...Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of recent advancements across various battery systems,including lithium-ion,sodium-ion,potassium-ion,and multivalent metal-ion batteries such as magnesium,zinc,calcium,and aluminum.Emerging technologies,including dual-ion,redox flow,and anion batteries,are also discussed.Particular attention is given to alkali metal rechargeable systems,such as lithium-sulfur,lithium-air,sodium-sulfur,sodium-selenium,potassium-sulfur,potassium-selenium,potassium-air,and zinc-air batteries,which have shown significant promise for high-energy applications.The optimization of key components—cathodes,anodes,electrolytes,and interfaces—is extensively analyzed,supported by advanced characterization techniques like time-of-flight secondary ion mass spectrometry(TOF-SIMS),synchrotron radiation,nuclear magnetic resonance(NMR),and in-situ spectroscopy.Moreover,sustainable strategies for recycling spent batteries,including pyrometallurgy,hydrometallurgy,and direct recycling,are critically evaluated to mitigate environmental impacts and resource scarcity.This review not only highlights the latest technological breakthroughs but also identifies key challenges in reaction mechanisms,material design,system integration,and waste battery recycling,and presents a roadmap for advancing high-performance and sustainable battery technologies.展开更多
文摘In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be recharged in high efficiency.With equal heat transfer capabilities of exhaust-air coil and borehole collector,the system provides a maximum overall efficiency.However,due to ground infinite capacity,the optimum brine flow rate is different from conventional two-exchanger system.The recharging system provides two peak overall efficiencies when the capacity ratio Cr=5 for laminar flow and Cr=15 for turbulent flow respectively.The overall efficiency is independent of exhaust-air temperature and undisturbed ground temperature,although the fluid properties depend on temperature.In practical system lower ethyl percentage brine should be chosen if the freezing point meets the system request,which can provide a higher overall efficiency.
基金Supported by the Excellent Young Scholars Research Fund of Beijing Institute of Technology(3040012211310)the Basic Research Fund of Beijing Institute of Technology(20120442010)
文摘A new method for recharging active medical implant(AMI)in vitro based on incoherent light source and results of the simulation experiments are proposed.Firstly,the models of the AMI recharging method based on incoherent light source in vitro are developed,which include the models of an incoherent light source and skin tissue.Secondly,simulation experiments of the incoherent light source of the AMI recharging process in vitro based on the Monte Carlo(MC)method are carried out.Finally,absorbed fractions of different layers and distributions of density along x axis of the tissue model and other important conclusions have been achieved.
文摘Water scarcity is a serious problem throughout the world for both urban & rural community. Urban centers in India are facing an ironical situation of water scarcity today. This paper includes an Analytical solution, Numerical modeling, Empirical approaches, In-situ test results to predict recharge (rate) mound of the ground-water and capacity of recharge well which is essential for the proper management of suitable artificial ground-water recharge systems to maintain water balance and stop salt water intrusion. Authors have derived analytical equation for predicting growth as well as decline of the ground-water mound depending on the intensity of recharge rate qr with different value of permeability k, depth of pervious strata H and diameter of well d, also studying the effects of variation in the geotechnical parameters on water-table fluctuations. In this paper to study the impact of numerical modeling using quadratic equation for unconfined aquifer base on rainfall intensity P and a change in saturated thickness H with variation in piezometric level. Empirical approaches are for evaluation of correct value of k of an undercharged unconfined aquifer with drawdown s0, influence zone L, recharge rate qr. In-situ test results give actual correlation between value of recharging rate of well and permeability on field. Authors have verified recharging rate of installed well from all approaches. A result obtained from the various field case studies gives the validation of the derived equation. Scientific quality measures of aquifer water are also recorded.
文摘RFID tags are used for different purposes. One of the major problems to be addressed, particularly for monitoring purposes, is their limited power autonomy. Tags must perform different tasks with limited power consumption and their batteries capacities are often too low, even if low power consumption techniques are implemented. In these operational situations tags should be kept in operation for long periods of time and the common solution is to go directly where they are installed and recharge them manually or change their batteries;alternatively, when possible, small photovoltaic (PV) panels may be adopted. This paper proposes a feasibility analysis of how it is possible to recharge a multipurpose RFID tag using a UAV (Unmanned Aerial Vehicle), which is programmed to go above the tags and recharge them. This possibility is analyzed from an energetic point of view assuming to recharge a Wireless Sensor Network (WSN) using a common commercial UAV adequately instrumented using the wireless power transfer technique.
基金supported by the National Natural Science Foundation of China (61904141)the Funding of the Natural Science Foundation of Shaanxi Province (2020JQ-295)+2 种基金China Postdoctoral Science Foundation (2020M673340)the Key Research and Development Program of Shaanxi (2020GY-252)the National Key Laboratory of Science and Technology on Vacuum Technology and Physics (HTKJ2019KL510007)。
文摘Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. However,achieving sensitivities exceeding 1000 kPa^(-1) while maintaining a pressure working range over 100 kPa is still challenging because of the limited intrinsic properties of soft matrix materials. Here, we report a magnetic field-induced porous elastomer with micropillar arrays(MPAs) as sensing materials and a well-patterned nickel fabric as an electrode. The developed sensor exhibits an ultrahigh sensitivity of 10,268 kPa^(-1)(0.6–170 kPa) with a minimum detection pressure of 0.25 Pa and a fast response time of 3 ms because of the unique structure of the MPAs and the textured morphology of the electrode. The porous elastomer provides an extended working range of up to 500 kPa with long-time durability. The sophisticated sensor system coupled with an integrated wireless recharging system comprising a flexible supercapacitor and inductive coils for transmission achieves excellent performance. Thus, a diverse range of practical applications requiring a low-to-high pressure range sensing can be developed. Our strategy, which combines a microstructured high-performance sensor device with a wireless recharging system, provides a basis for creating next-generation flexible electronics.
基金supported by the National Natural Science Foundation of China (22379038)Science Research Project of Hebei Education Department (JZX2024015)+4 种基金Shijiazhuang Science and Technology Plan Project (241791357A)Central Guidance for Local Science and Technology Development Funds Project (246Z4408G)Excellent Youth Research Innovation Team of Hebei University (QNTD202410)High-level Talents Research Start-Up Project of Hebei University (521100224223)Hebei Province Innovation Capability Enhancement Plan Project (22567620H)。
文摘Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金support from the Nuclear Fuel Pellet Appearance Quality Inspection Device Project(20190304 A).
文摘Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the continuous increase in the cost of LIBs.Along with the rapid development of electric transportation,it has become inevitable to trigger a new round of competition in alternative energy storage systems.Some monovalent rechargeable metal ion batteries(sodium ion batteries(SIBs)and potassium ion batteries(PIBs),etc.)and multi-valent rechargeable metal-ion batteries(magnesium ion batteries(MIBs),calcium ion batteries(CIBs),zinc ion batteries(ZIBs),and aluminum ion batteries(AIBs),etc.)are potential candidates,which can replace LIBs in some of the scenarios to alleviate the pressure on supply.The cathode material plays a crucial role in determining the battery capacity.Transition metal compounds dominated by layered transition metal oxides as key cathode materials for secondary batteries play an important role in the advancement of various battery energy storage systems.In summary,this manuscript aims to review and summarize the research progress on transition metal compounds used as cathodes in different metal ion batteries,with the aim of providing valuable guidance for the exploration and design of high-performance integrated battery systems.
基金supported by the National Natural Science Foundation of China(No.U2040210).
文摘Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms.
文摘Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly software tool developed to estimate natural groundwater recharge using two widely adopted approaches:the Water Balance(WB)method and Water Table Fluctuation(WTF)method.In the WB approach,the catchment area is divided into seven land-use categories,each representing distinct recharge characteristics.The tool includes eighteen different reference Evapotranspiration(ET0)estimation methods,accommodating varying levels of climatic input data availability.Additional required inputs include crop coefficients for major crops and Curve Numbers(CN)for specific land-use types.The WTF approach considers up to three aquifer layers with different specific yields(for unconfined aquifer)or storage coeffi-cient(for confined aquifer).It also takes into account groundwater withdrawal(draft)and lateral water movement within or outside the aquifer system.M-RechargeCal is process-based and does not require cali-bration.Its performance was evaluated using six datasets from humid-subtropical environments,demon-2 strating reliable results(R=0.867,r=0.93,RE=10.6%,PMARE=9.8,ENS=0.93).The model can be applied to defined hydrological or hydrogeological units such as watersheds,aquifers,or catchments,and can be used to assess the impacts of land-use/land-cover changes on hydrological components.However,it has not yet been tested in arid regions.M-RechargeCal provides modelers and planners with a practical,accessible tool for recharge estimation to support groundwater modeling and water resource planning.The software is available free of charge and can be downloaded from the author's institutional website or obtained by contacting the author via email.
基金supported by the National Natural Science Foundation of China(32071721,32071720,32271814,32301530,32471806)Tianjin Excellent Special Commissioner for Agricultural Science and Technology Project(23ZYCGSN00580)+4 种基金Young Elite Scientist Sponsorship Program by Cast(No.YESS20230242)Natural Science Foundation of Tianjin(23JCZDJC00630)the China Postdoctoral Science Foundation under Grant Number(2023M741363,2023M740563)the Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202302031)China Scholarship Council(No.202408120091,No.202408120105).
文摘Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic applications recently.Due to the catalytic deficiency of neutral carbon atoms,the usage of single lignocellulosic-based carbon materials in electrocatalysis involving energy storage and conversion presents unsatisfactory applicability.However,atomic-level modulation of lignocellulose-based carbon materials can optimize the electronic structures,charge separation,transfer processes,and so forth,which results in substantially enhanced electrocatalytic performance of carbon-based catalysts.This paper reviews the recent advances in the rational design of lignocellulosic-based carbon materials as electrocatalysts from an atomic-level perspective,such as self/external heteroatom doping and metal modification.Then,through systematic discussion of the design principles and reaction mechanisms of the catalysts,the applications of the prepared lignocellulosic-based catalysts in rechargeable batteries and electrocatalysis are reviewed.Finally,the challenges in improving the catalytic performance of lignocellulosic-based carbon materials as electrocatalysts and the prospects in diverse applications are reviewed.This review contributes to the synthesis strategy of lignocellulose-based carbon electrocatalysts via atomic-level modulation,which in turn promotes the lignocellulose valorization for energy storage and conversion.
文摘Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water supplies become critically low especially during early summers and dry periods to sustain agriculture and livelihoods in the region. In the present study, groundwater prospects were investigated using vertical electrical sounding(VES) technique to supplement irrigation and domestic water supplies in the Upper Indus Basin of Pakistan. The findings of the study revealed groundwater potential of about 7 km~3 in the aquifer, the yield of which may vary depending on the geological setup and characteristics of the subsurface lithology. The mean thickness of the aquifer was estimated to be approximately 11 m across the surveyed area, which spans about 2,093 km~2. Areas with favorable aquifer potential(exceeding 30 m in thickness) account for only approximately 8.4% of the region, while moderate potential(20–30 m thickness) is present in about 19.8% of the surveyed area. Groundwater occurrence is limited in the elevated northeastern regions due to the prevalence of unfractured igneous and metamorphic rock formations. However, in-depth hydrogeological investigations and hydro-dynamics research would be helpful in understanding precise nature of the aquifer system as well as links between various recharge components of the groundwater in the region. An integrated water resource management approach would be beneficial for sustaining agriculture and livelihoods in this diverse mountainous region in future.
文摘Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage in structures such as dams,tunnels,canals,and pipelines.By utilizing a few easily measurable parameters,engineers can employ these formulas to generate preliminary leakage rate estimates before proceeding with more detailed analyses.In this study,a physical model was developed,and a series of experiments were conducted,considering variables such as inflow rate,materials constituting the unsaturated medium,and variations in infiltration trench depth and width.As a result,a novel artificial recharge method was introduced,and an empirical equation,Q_(out)=0.0066×D_(50)^(0.64)×L×P^(0.36),was proposed to estimate the infiltration capacity of the trench.This equation incorporates factors such as the wetted perimeter,mean soil particle diameter,trench length,and a coefficient.A comparative analysis between the observed data from nine Iranian earthen canals and the values calculated using the proposed equation revealed an average relative error of 15%between the two datasets.In addition,the Pearson correlation coefficient was determined to be 0.981 and the Root Mean Square Error(RMSE)was 0.381,demonstrating the strong predictive performance of the equation.The parameters considered in the proposed equation allow for its application across diverse regions.Given its accurate performance,this equation provides a reliable initial estimate of the leakage rate,thereby helping to reduce costs and save time.
文摘This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community.
文摘Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion.
基金supported by the Hydrogeological Investigation Project in Kaidu River and Kongque River Basin in Xinjiang,China(No.DD2020171)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020006).
文摘Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization.
基金supported by the National Natural Science Foundation of China(No.22309056)the National Key R&.D Program of China(No.2022YFB2404800)+4 种基金the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee(No.JCYJ20210324141613032)the Knowledge Innovation Project of Wuhan City(No.2022010801010303)the City University of Hong Kong Strategic Research Grant(SRG),Hong Kong,China(No.7005505)the City University of Hong Kong Donation Research Grant,Hong Kong,China(No.DON-RMG 9229021)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries.
基金supported by the National Natural Science Foundation of China(Nos.U21A20311 and 22409147)。
文摘Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of recent advancements across various battery systems,including lithium-ion,sodium-ion,potassium-ion,and multivalent metal-ion batteries such as magnesium,zinc,calcium,and aluminum.Emerging technologies,including dual-ion,redox flow,and anion batteries,are also discussed.Particular attention is given to alkali metal rechargeable systems,such as lithium-sulfur,lithium-air,sodium-sulfur,sodium-selenium,potassium-sulfur,potassium-selenium,potassium-air,and zinc-air batteries,which have shown significant promise for high-energy applications.The optimization of key components—cathodes,anodes,electrolytes,and interfaces—is extensively analyzed,supported by advanced characterization techniques like time-of-flight secondary ion mass spectrometry(TOF-SIMS),synchrotron radiation,nuclear magnetic resonance(NMR),and in-situ spectroscopy.Moreover,sustainable strategies for recycling spent batteries,including pyrometallurgy,hydrometallurgy,and direct recycling,are critically evaluated to mitigate environmental impacts and resource scarcity.This review not only highlights the latest technological breakthroughs but also identifies key challenges in reaction mechanisms,material design,system integration,and waste battery recycling,and presents a roadmap for advancing high-performance and sustainable battery technologies.