期刊文献+
共找到473篇文章
< 1 2 24 >
每页显示 20 50 100
Study of Performance on Recharging the Borehole by Means of Exhaust-air Energy
1
作者 周亚素 FAHLN Per 《Journal of Donghua University(English Edition)》 EI CAS 2009年第2期126-131,共6页
In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be r... In this paper,the performance analysis of recharging the borehole by means of exhaust-air energy is carried out.The results show that a vertical borehole used as heat source for a Ground Source Heat Pump(GSHP)can be recharged in high efficiency.With equal heat transfer capabilities of exhaust-air coil and borehole collector,the system provides a maximum overall efficiency.However,due to ground infinite capacity,the optimum brine flow rate is different from conventional two-exchanger system.The recharging system provides two peak overall efficiencies when the capacity ratio Cr=5 for laminar flow and Cr=15 for turbulent flow respectively.The overall efficiency is independent of exhaust-air temperature and undisturbed ground temperature,although the fluid properties depend on temperature.In practical system lower ethyl percentage brine should be chosen if the freezing point meets the system request,which can provide a higher overall efficiency. 展开更多
关键词 recharging BOREHOLE exhaust-air coil BRINE flowrate coil allocation ratio efficiency mathematical model
在线阅读 下载PDF
Recharging method of active medical implant using wearable incoherent light source
2
作者 孔宪越 宋勇 +4 位作者 胡蓝心 郝群 代盼涛 曹杰 高天欣 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期120-127,共8页
A new method for recharging active medical implant(AMI)in vitro based on incoherent light source and results of the simulation experiments are proposed.Firstly,the models of the AMI recharging method based on incohe... A new method for recharging active medical implant(AMI)in vitro based on incoherent light source and results of the simulation experiments are proposed.Firstly,the models of the AMI recharging method based on incoherent light source in vitro are developed,which include the models of an incoherent light source and skin tissue.Secondly,simulation experiments of the incoherent light source of the AMI recharging process in vitro based on the Monte Carlo(MC)method are carried out.Finally,absorbed fractions of different layers and distributions of density along x axis of the tissue model and other important conclusions have been achieved. 展开更多
关键词 active medical implant(AMI) recharging incoherent light source Monte Carlo(MC)
在线阅读 下载PDF
Treating Drilling Waste Water by Recharging to Waste Well
3
作者 Wang Yanming and Zhou Xiangyu(Environmental Monitoring Center,CNPC) 《China Oil & Gas》 CAS 1999年第1期48-49,共2页
关键词 Treating Drilling Waste Water by recharging to Waste Well
在线阅读 下载PDF
Discussion on artificial recharging from shallow aquifer to deep aquifer
4
《Global Geology》 1998年第1期104-104,共1页
关键词 DEEP Discussion on artificial recharging from shallow aquifer to deep aquifer
在线阅读 下载PDF
Geotechnical Parameters Impact on Artificial Ground Water Recharging Technique for Urban Centers
5
作者 Pratima Patel Mahesh Desai Jatin Desai 《Journal of Water Resource and Protection》 2011年第5期275-282,共8页
Water scarcity is a serious problem throughout the world for both urban & rural community. Urban centers in India are facing an ironical situation of water scarcity today. This paper includes an Analytical solutio... Water scarcity is a serious problem throughout the world for both urban & rural community. Urban centers in India are facing an ironical situation of water scarcity today. This paper includes an Analytical solution, Numerical modeling, Empirical approaches, In-situ test results to predict recharge (rate) mound of the ground-water and capacity of recharge well which is essential for the proper management of suitable artificial ground-water recharge systems to maintain water balance and stop salt water intrusion. Authors have derived analytical equation for predicting growth as well as decline of the ground-water mound depending on the intensity of recharge rate qr with different value of permeability k, depth of pervious strata H and diameter of well d, also studying the effects of variation in the geotechnical parameters on water-table fluctuations. In this paper to study the impact of numerical modeling using quadratic equation for unconfined aquifer base on rainfall intensity P and a change in saturated thickness H with variation in piezometric level. Empirical approaches are for evaluation of correct value of k of an undercharged unconfined aquifer with drawdown s0, influence zone L, recharge rate qr. In-situ test results give actual correlation between value of recharging rate of well and permeability on field. Authors have verified recharging rate of installed well from all approaches. A result obtained from the various field case studies gives the validation of the derived equation. Scientific quality measures of aquifer water are also recorded. 展开更多
关键词 Unconfined AQUIFER WELL DETERMINANT RECHARGE Rate & Hydraulic Conductivity GEOMETRICAL Properties Of AQUIFER Pre CAST Octagonal RECHARGE WELL
暂未订购
Recharging RFID Tags for Environmental Monitoring Using UAVs: A Feasibility Analysis
6
作者 Marco Allegretti Silvano Bertoldo 《Wireless Sensor Network》 2015年第2期13-19,共7页
RFID tags are used for different purposes. One of the major problems to be addressed, particularly for monitoring purposes, is their limited power autonomy. Tags must perform different tasks with limited power consump... RFID tags are used for different purposes. One of the major problems to be addressed, particularly for monitoring purposes, is their limited power autonomy. Tags must perform different tasks with limited power consumption and their batteries capacities are often too low, even if low power consumption techniques are implemented. In these operational situations tags should be kept in operation for long periods of time and the common solution is to go directly where they are installed and recharge them manually or change their batteries;alternatively, when possible, small photovoltaic (PV) panels may be adopted. This paper proposes a feasibility analysis of how it is possible to recharge a multipurpose RFID tag using a UAV (Unmanned Aerial Vehicle), which is programmed to go above the tags and recharge them. This possibility is analyzed from an energetic point of view assuming to recharge a Wireless Sensor Network (WSN) using a common commercial UAV adequately instrumented using the wireless power transfer technique. 展开更多
关键词 RFID Tags RECHARGEABLE Tags UAV WIRELESS POWER TRANSFER
暂未订购
Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system 被引量:4
7
作者 Libo Gao Ying Han +9 位作者 James Utama Surjadi Ke Cao Wenzhao Zhou Hongcheng Xu Xinkang Hu Mingzhi Wang Kangqi Fan Yuejiao Wang Weidong Wang Horacio D.Espinosa 《Science China Materials》 SCIE EI CAS CSCD 2021年第8期1977-1988,共12页
Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. How... Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. However,achieving sensitivities exceeding 1000 kPa^(-1) while maintaining a pressure working range over 100 kPa is still challenging because of the limited intrinsic properties of soft matrix materials. Here, we report a magnetic field-induced porous elastomer with micropillar arrays(MPAs) as sensing materials and a well-patterned nickel fabric as an electrode. The developed sensor exhibits an ultrahigh sensitivity of 10,268 kPa^(-1)(0.6–170 kPa) with a minimum detection pressure of 0.25 Pa and a fast response time of 3 ms because of the unique structure of the MPAs and the textured morphology of the electrode. The porous elastomer provides an extended working range of up to 500 kPa with long-time durability. The sophisticated sensor system coupled with an integrated wireless recharging system comprising a flexible supercapacitor and inductive coils for transmission achieves excellent performance. Thus, a diverse range of practical applications requiring a low-to-high pressure range sensing can be developed. Our strategy, which combines a microstructured high-performance sensor device with a wireless recharging system, provides a basis for creating next-generation flexible electronics. 展开更多
关键词 high sensitivity pressure sensor SUPERCAPACITOR wireless recharging flexible electronics
原文传递
Hydrogel Electrolytes-Based Rechargeable Zinc-Ion Batteries under Harsh Conditions 被引量:1
8
作者 Zhaoxi Shen Zicheng Zhai +6 位作者 Yu Liu Xuewei Bao Yuechong Zhu Tong Zhang Linsen Li Guo Hong Ning Zhang 《Nano-Micro Letters》 2025年第10期14-48,共35页
Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme... Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined. 展开更多
关键词 Hydrogel electrolytes Rechargeable zinc-ion batteries Harsh conditions Design strategies Energy storage
在线阅读 下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
9
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
在线阅读 下载PDF
Progress and prospect of transition metal compound cathode materials with stable metal ion storage effect in various battery systems
10
作者 Dongfang Guo Bin Zhang 《Green Energy & Environment》 2025年第8期1692-1726,共35页
Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the co... Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the continuous increase in the cost of LIBs.Along with the rapid development of electric transportation,it has become inevitable to trigger a new round of competition in alternative energy storage systems.Some monovalent rechargeable metal ion batteries(sodium ion batteries(SIBs)and potassium ion batteries(PIBs),etc.)and multi-valent rechargeable metal-ion batteries(magnesium ion batteries(MIBs),calcium ion batteries(CIBs),zinc ion batteries(ZIBs),and aluminum ion batteries(AIBs),etc.)are potential candidates,which can replace LIBs in some of the scenarios to alleviate the pressure on supply.The cathode material plays a crucial role in determining the battery capacity.Transition metal compounds dominated by layered transition metal oxides as key cathode materials for secondary batteries play an important role in the advancement of various battery energy storage systems.In summary,this manuscript aims to review and summarize the research progress on transition metal compounds used as cathodes in different metal ion batteries,with the aim of providing valuable guidance for the exploration and design of high-performance integrated battery systems. 展开更多
关键词 RECHARGEABLE Battery CATHODE PROGRESS PROSPECT
在线阅读 下载PDF
Nutrient recharge effect of Yangtze River to tributary backwater area in Three Gorges Reservoir,China
11
作者 Wei Yin Chao Wang +6 位作者 Shidian Wu Fei Wu Xiaokang Xin Fengpeng Bai Feixi Zhao Haiyan Jia Hong Zhang 《Journal of Environmental Sciences》 2025年第8期426-435,共10页
Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used... Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms. 展开更多
关键词 Yangtze River TRIBUTARY INTERACTION Three gorges reservoir NUTRIENT Recharge effect
原文传递
Development of a model to estimate groundwater recharge
12
作者 Md.Hossain Ali 《Journal of Groundwater Science and Engineering》 2025年第4期406-422,共17页
Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly s... Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly software tool developed to estimate natural groundwater recharge using two widely adopted approaches:the Water Balance(WB)method and Water Table Fluctuation(WTF)method.In the WB approach,the catchment area is divided into seven land-use categories,each representing distinct recharge characteristics.The tool includes eighteen different reference Evapotranspiration(ET0)estimation methods,accommodating varying levels of climatic input data availability.Additional required inputs include crop coefficients for major crops and Curve Numbers(CN)for specific land-use types.The WTF approach considers up to three aquifer layers with different specific yields(for unconfined aquifer)or storage coeffi-cient(for confined aquifer).It also takes into account groundwater withdrawal(draft)and lateral water movement within or outside the aquifer system.M-RechargeCal is process-based and does not require cali-bration.Its performance was evaluated using six datasets from humid-subtropical environments,demon-2 strating reliable results(R=0.867,r=0.93,RE=10.6%,PMARE=9.8,ENS=0.93).The model can be applied to defined hydrological or hydrogeological units such as watersheds,aquifers,or catchments,and can be used to assess the impacts of land-use/land-cover changes on hydrological components.However,it has not yet been tested in arid regions.M-RechargeCal provides modelers and planners with a practical,accessible tool for recharge estimation to support groundwater modeling and water resource planning.The software is available free of charge and can be downloaded from the author's institutional website or obtained by contacting the author via email. 展开更多
关键词 Groundwater recharge MODELLING SOFTWARE Water balance AQUIFER Specific yield
在线阅读 下载PDF
Sustainable Carbon-Based Catalyst Materials Derived From Lignocellulosic Biomass for Energy Storage and Conversion:Atomic Modulation and Properties Improvement
13
作者 Wei Li Ying Xu +4 位作者 Guanhua Wang Ting Xu Kui Wang Shangru Zhai Chuanling Si 《Carbon Energy》 2025年第5期55-100,共46页
Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic ap... Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic applications recently.Due to the catalytic deficiency of neutral carbon atoms,the usage of single lignocellulosic-based carbon materials in electrocatalysis involving energy storage and conversion presents unsatisfactory applicability.However,atomic-level modulation of lignocellulose-based carbon materials can optimize the electronic structures,charge separation,transfer processes,and so forth,which results in substantially enhanced electrocatalytic performance of carbon-based catalysts.This paper reviews the recent advances in the rational design of lignocellulosic-based carbon materials as electrocatalysts from an atomic-level perspective,such as self/external heteroatom doping and metal modification.Then,through systematic discussion of the design principles and reaction mechanisms of the catalysts,the applications of the prepared lignocellulosic-based catalysts in rechargeable batteries and electrocatalysis are reviewed.Finally,the challenges in improving the catalytic performance of lignocellulosic-based carbon materials as electrocatalysts and the prospects in diverse applications are reviewed.This review contributes to the synthesis strategy of lignocellulose-based carbon electrocatalysts via atomic-level modulation,which in turn promotes the lignocellulose valorization for energy storage and conversion. 展开更多
关键词 atomic modulation carbon materials ELECTROCATALYSIS lignocellulosic biomass rechargeable batteries
在线阅读 下载PDF
Prospecting groundwater potential using vertical electrical sounding technique for sustainable agriculture in the Upper Indus Basin, Pakistan
14
作者 Arshad ASHRAF Mansoor ALI 《Journal of Mountain Science》 2025年第11期4012-4023,共12页
Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water s... Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water supplies become critically low especially during early summers and dry periods to sustain agriculture and livelihoods in the region. In the present study, groundwater prospects were investigated using vertical electrical sounding(VES) technique to supplement irrigation and domestic water supplies in the Upper Indus Basin of Pakistan. The findings of the study revealed groundwater potential of about 7 km~3 in the aquifer, the yield of which may vary depending on the geological setup and characteristics of the subsurface lithology. The mean thickness of the aquifer was estimated to be approximately 11 m across the surveyed area, which spans about 2,093 km~2. Areas with favorable aquifer potential(exceeding 30 m in thickness) account for only approximately 8.4% of the region, while moderate potential(20–30 m thickness) is present in about 19.8% of the surveyed area. Groundwater occurrence is limited in the elevated northeastern regions due to the prevalence of unfractured igneous and metamorphic rock formations. However, in-depth hydrogeological investigations and hydro-dynamics research would be helpful in understanding precise nature of the aquifer system as well as links between various recharge components of the groundwater in the region. An integrated water resource management approach would be beneficial for sustaining agriculture and livelihoods in this diverse mountainous region in future. 展开更多
关键词 Climate change Groundwater recharge Water management KARAKORAM
原文传递
Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches
15
作者 Mojtaba Hassanpour Hossein Khozeymehnezhad Abalfazl Akbarpour 《Journal of Groundwater Science and Engineering》 2025年第2期101-115,共15页
Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage ... Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage in structures such as dams,tunnels,canals,and pipelines.By utilizing a few easily measurable parameters,engineers can employ these formulas to generate preliminary leakage rate estimates before proceeding with more detailed analyses.In this study,a physical model was developed,and a series of experiments were conducted,considering variables such as inflow rate,materials constituting the unsaturated medium,and variations in infiltration trench depth and width.As a result,a novel artificial recharge method was introduced,and an empirical equation,Q_(out)=0.0066×D_(50)^(0.64)×L×P^(0.36),was proposed to estimate the infiltration capacity of the trench.This equation incorporates factors such as the wetted perimeter,mean soil particle diameter,trench length,and a coefficient.A comparative analysis between the observed data from nine Iranian earthen canals and the values calculated using the proposed equation revealed an average relative error of 15%between the two datasets.In addition,the Pearson correlation coefficient was determined to be 0.981 and the Root Mean Square Error(RMSE)was 0.381,demonstrating the strong predictive performance of the equation.The parameters considered in the proposed equation allow for its application across diverse regions.Given its accurate performance,this equation provides a reliable initial estimate of the leakage rate,thereby helping to reduce costs and save time. 展开更多
关键词 GROUNDWATER Artificial recharge Desert area Infiltration rate Physical model
在线阅读 下载PDF
Seasonal effects on groundwater fluoride and evaluating health hazards: In-situ remediation via managed aquifer recharge
16
作者 D.Karunanidhi Meera Rajan +1 位作者 Priyadarsi D.Roy T.Subramani 《Geoscience Frontiers》 2025年第5期123-138,共16页
This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)perio... This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community. 展开更多
关键词 FLUORIDE Seasonal fluctuations Geochemical processes Geogenic sources Managed aquifer recharge
在线阅读 下载PDF
Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia
17
作者 Sulistiani Rachmat Fajar Lubis +2 位作者 I Putu Santikayasa Muh.Taufik Gumilar Utamas Nugraha 《Journal of Groundwater Science and Engineering》 2025年第4期352-370,共19页
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC chan... Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion. 展开更多
关键词 Groundwater Recharge Climate Change Remote Sensing Socioeconomic Pathways SWAT
在线阅读 下载PDF
Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang,China
18
作者 Bin Ran Wan-yu Zhang +1 位作者 Zai-yong Zhang Ze-yu Wu 《Journal of Groundwater Science and Engineering》 2025年第3期225-236,共12页
Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under di... Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization. 展开更多
关键词 INFILTRATION Matrix flow Chloride mass balance RECHARGE Kongque River Irrigation District Aridregions
在线阅读 下载PDF
Antimony nanoparticles encapsulated in three-dimensional porous carbon frameworks for high-performance rechargeable batteries
19
作者 An-Qi Chen Si-Guang Guo +5 位作者 Yu Liu Ling Long Zhuo Li Biao Gao Paul K.Chu Kai-Fu Huo 《Rare Metals》 2025年第5期3026-3036,共11页
Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction poten... Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries. 展开更多
关键词 Rechargeable battery Antimony anode Porous carbon framework Magnesiothermic reduction Cycle life
原文传递
Research progress and perspectives on rechargeable batteries
20
作者 Gaojing Yang Zhimeng Hao +79 位作者 Chun Fang Wen Zhang Xia-hui Zhang Yuyu Li Zhenhua Yan Zhiyuan Wang Tao Sun Xiaofei Yang Fei Wang Chengzhi Zhang Hongchang Jin Shuaifeng Lou Nan Chen Yiju Li Jia-Yan Liang Le Yang Shouyi Yuan Jin Niu Shuai Li Xu Xu Dong Wang Song Jin Bo-Quan Li Meng Zhao Changtai Zhao Baoyu Sun Xiaohong Wu Yuruo Qi Lili Wang Nan Li Bin Qin Dong Yan Xin Cao Ting Jin Peng Wei Jing Zhang Jiaojiao Liang Li Liu Ruimin Sun Zengxi Wei Xinxin Cao Kaixiang Lei Xiaoli Dong Xijun Xu Xiaohui Rong Zhaomeng Liu Hongbo Ding Xuanpeng Wang Zhanheng Yan Guohui Qin Guanghai Chen Yaxin Chen Ping Nie Zhi Chang Fang Wan Minglei Mao Zejing Lin Anxing Zhou Qiubo Guo Wen Luo Xiaodong Shi Yan Guo Longtao Ma Xiangkun Ma Jiangjiang Duan Zhizhang Yuan Jiafeng Lei Hao Fan Jinlin Yang Chao Li Tong Zhou Jiabiao Lian Jin Zhao Huanxin Ju Tinglu Song Zulipiya Shadike Weiguang Lv Jiawei Wen Lingxing Zeng Jianmin Ma 《Chinese Chemical Letters》 2025年第10期9-93,共85页
Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of re... Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of recent advancements across various battery systems,including lithium-ion,sodium-ion,potassium-ion,and multivalent metal-ion batteries such as magnesium,zinc,calcium,and aluminum.Emerging technologies,including dual-ion,redox flow,and anion batteries,are also discussed.Particular attention is given to alkali metal rechargeable systems,such as lithium-sulfur,lithium-air,sodium-sulfur,sodium-selenium,potassium-sulfur,potassium-selenium,potassium-air,and zinc-air batteries,which have shown significant promise for high-energy applications.The optimization of key components—cathodes,anodes,electrolytes,and interfaces—is extensively analyzed,supported by advanced characterization techniques like time-of-flight secondary ion mass spectrometry(TOF-SIMS),synchrotron radiation,nuclear magnetic resonance(NMR),and in-situ spectroscopy.Moreover,sustainable strategies for recycling spent batteries,including pyrometallurgy,hydrometallurgy,and direct recycling,are critically evaluated to mitigate environmental impacts and resource scarcity.This review not only highlights the latest technological breakthroughs but also identifies key challenges in reaction mechanisms,material design,system integration,and waste battery recycling,and presents a roadmap for advancing high-performance and sustainable battery technologies. 展开更多
关键词 Rechargeable batteries Electrode materials Electrolyte chemistry Characterization technologies Battery recycling
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部