Construction of LNG receiving terminals The scale of receiving terminals is expanding rapidly At the end of 1999,the state approved the Guangdong LNG Pilot Project,which opened the prelude to the construction of LNG r...Construction of LNG receiving terminals The scale of receiving terminals is expanding rapidly At the end of 1999,the state approved the Guangdong LNG Pilot Project,which opened the prelude to the construction of LNG receiving terminals.In 2006,China's first LNG receiving terminal,namely Dapeng LNG Receiving Terminal in Shenzhen,Guangdong Province,was put into operation,marking the beginning of the use of overseas natural gas in China.展开更多
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat...Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.展开更多
An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagne...An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagnetic and circuit analysis is conducted to establish the magnetic induction intensity and equivalent circuit models for the wireless power transmission system.Combining these models involves using the number of layers in each dimension as the optimization variable.Constraints are imposed based on the normalized standard deviation of the receiving-end load power and spatial dimensions.At the same time,the optimization objective aims to maximize the average power of the receiving-end load.This process leads to formulating an optimization model for the RC.Finally,three-dimensional RCs with three different sets of parameters are wound,and the receiving-end load power of these coils is experimentally tested under various drive currents.The experimental values of the receiving-end load power exhibit a consistent trend with theoretical values,with experimental values consistently lower than theoretical values.The optimized coil parameters are determined by conducting comparative exper-iments,with a theoretical value of 4.6%for the normalized standard deviation of the receiving-end load power and an average experimental value of 9.6%.The study addressed the power supply issue of near-infrared capsule robots,which is important for early diagnosing and treating gastrointestinal diseases.展开更多
In this paper,we investigate a distributed multi-input multi-output and orthogonal frequency division multiplexing(MIMO-OFDM) dual-functional radar-communication(DFRC) system,which enables simultaneous communication a...In this paper,we investigate a distributed multi-input multi-output and orthogonal frequency division multiplexing(MIMO-OFDM) dual-functional radar-communication(DFRC) system,which enables simultaneous communication and sensing in different subcarrier sets.To obtain the best tradeoff between communication and sensing performance,we first derive Cramer-Rao Bound(CRB) of targets in detection area,and then maximize the transmission rate by jointly optimizing the power/subcarriers allocation and the selection of radar receivers under the constraints of detection performance and total transmit power.To tackle the non-convex mixed integer programming problem,we decompose the original problem into a semidefinite programming(SDP) problem and a convex quadratic integer problem and solve them iteratively.The numerical results demonstrate the effectiveness of our proposed algorithm,as well as the performance improvement brought by optimizing radar receivers selection.展开更多
To enable simultaneous transmit and receive(STAR)on the same frequency in a densely deployed space with multi-interference sources,this work proposes a digitally-assisted analog selfinterference cancellation method,wh...To enable simultaneous transmit and receive(STAR)on the same frequency in a densely deployed space with multi-interference sources,this work proposes a digitally-assisted analog selfinterference cancellation method,which can acquire reference signals through flexible wired/wireless switching access.Based on this method,the Minimum Mean Square Error algorithm with known channel state information is derived in detail,determining the upper limit of the cancellation performance,and the Adaptive Dithered Linear Search algorithm for real-time engineering cancellation is given.The correctness of theoretical analysis is verified by the practical self-interference channel measured by a vector network analyzer.Furthermore,we have designed and implemented the corresponding multiinterference cancellation prototype with the digitallyassisted structure,capable of handling multiple interferences(up to three)and supporting a large receive bandwidth of 100 MHz as well as a wide frequency coverage from 30 MHz to 3000 MHz.Prototype test results demonstrate that in the presence of three interferences,when the single interference bandwidth is 0.2/2/20 MHz(corresponding to the receive bandwidth of 2/20/100 MHz),the cancellation performance can reach 46/32/22 dB or more.展开更多
Currently, the selection of receiving traces in geometry design is mostly based on the horizontal layered medium hypothesis, which is unable to meet survey requirements in a complex area. This paper estimates the opti...Currently, the selection of receiving traces in geometry design is mostly based on the horizontal layered medium hypothesis, which is unable to meet survey requirements in a complex area. This paper estimates the optimal number of receiving traces in field geometry using a numerical simulation based on a field test conducted in previous research (Zhu et al., 2011). A mathematical model is established for total energy and average efficiency energy using fixed trace spacing and optimal receiving traces are estimated. Seismic data acquired in a complex work area are used to verify the correctness of the proposed method. Results of model data calculations and actual data processing show that results are in agreement. This indicates that the proposed method is reasonable, correct, sufficiently scientific, and can be regarded as a novel method for use in seismic geometry design in complex geological regions.展开更多
A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving ...A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving 50 ft transmission lines and a pair of feedback networks for offset cancellation. At a positive supply voltage of 2 V and a negative supply voltage of - 2V, the power dissipation is about 280 mW. The small-signal gain is higher than 46 dB and the input dynamic range is about 40 dB with a constant single-ended output voltage swing of 400 mV. Satisfactory eye-diagrams are obtained at the bit rate of 12 Gbit/s limited by the test set-up. The chip area is 1.15 mm ×0.7 mm.展开更多
Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed...Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.展开更多
This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint ch...This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint channel estimation and symbol detection algorithm isderived. In the algorithm, the channel estimator performs alternately in two modes. During thetraining mode, the channel state information (CSI) is obtained by a discrete-Fourier-transform-basedchannel estimator and the noise variance and covariance matrix of the channel response is estimatedby the proposed method. In the data transmission mode, the CSI and transmitted data is obtainediteratively. In order to suppress the error propagation caused by a random error in identifyingsymbols, a simple error propagation detection criterion is proposed and an adaptive training schemeis applied to suppress the error propagation. Both theoretical analysis and simulation results showthat this algorithm gives better bit-error-rate performance and saves the overhead of OFDM systems.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multipl...A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems. An iterative solution is proposed to solve the MAP-based problem and an interference rejection combining (IRC) receiver is derived to suppress co-channel interference (CCI) based on the estimated CFR and SCM. Furthermore, considering the property of SCM, i. e., Hermitian and semi-definite, two schemes are proposed to improve the accuracy of SCM estimation. The first scheme is proposed to parameterize the SCM via a sum of a series of matrices in the time domain. The second scheme measures the SCM on each subcarrier as a low-rank model while the model order can be chosen through the penalized-likelihood approach. Simulation results are provided to demonstrate the effectiveness of the proposed method.展开更多
In this paper,the performance of uplink multiuser massive multiple-input multipleoutput(MIMO)system with spatial modulation over transmit-correlated Rayleigh fading channel is investigated,where a large number of ante...In this paper,the performance of uplink multiuser massive multiple-input multipleoutput(MIMO)system with spatial modulation over transmit-correlated Rayleigh fading channel is investigated,where a large number of antennas are deployed at the base station and linear zero-forcing(ZF)receiver is employed for detection.By taking the transmit correlation and the randomness of shadow fading in to account,the bit error rate(BER)performance of the system is analyzed.According to the performance analysis,an approximated expression of overall average BER of the system is attained.Besides,asymptotic performance is studied and the corresponding BER expression at high signal-to-noise ratio is derived.On this basis,the diversity gain of the system can be obtained for performance evaluation.Simulation results show that the derived theoretical expressions match the simulated values well,which verifies the correctness of our analysis.展开更多
In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-sourc...In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.展开更多
Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, ...Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.展开更多
According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance loc...According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.展开更多
Hyperthyroidism refers to a clinical state that results from inappropriately hight hyroid hormone levels in the tissues;.Ⅰ-131 therapy plays a critical role and provides a remarkable curative effect in targeting thyr...Hyperthyroidism refers to a clinical state that results from inappropriately hight hyroid hormone levels in the tissues;.Ⅰ-131 therapy plays a critical role and provides a remarkable curative effect in targeting thyroid diseases. Thyroid cells can take up isotope I-131, which emits not only beta rays but also展开更多
The paper proposes an Indoor Localization System(ILS)which uses only one fixed Base Station(BS)with simple non-reconfigurable antennas.The proposed algorithm measures Received Signal Strength(RSS)and maps it to the lo...The paper proposes an Indoor Localization System(ILS)which uses only one fixed Base Station(BS)with simple non-reconfigurable antennas.The proposed algorithm measures Received Signal Strength(RSS)and maps it to the location in the room by estimating signal strength of a direct line of sight(LOS)signal and signal of the first order reflection from the wall.The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office,sampling 21 different locations in the room.It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80%confidence Cumulative Distribution Function(CDF)user level,demonstrating the ability to accurately estimate the receiver’s location within the room.The system is intended as a cost-efficient indoor localization technique,offering simplicity and easy integration with existing wireless communication systems.Unlike comparable single base station localization techniques,the proposed system does not require beam scanning,offering stable communication capacity while performing the localization process.展开更多
Position, velocity, and timing(PVT) signals from the Global Positioning System(GPS)are used throughout the world but the availability and reliability of these signals in all environments has become a subject of co...Position, velocity, and timing(PVT) signals from the Global Positioning System(GPS)are used throughout the world but the availability and reliability of these signals in all environments has become a subject of concern for both civilian and military applications. This presentation summarizes recent advances in navigation sensor technology, including GPS, inertial, and other navigation aids that address these concerns. Also addressed are developments in sensor integration technology with several examples described, including the Bluefin-21 system mechanization.展开更多
In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance d...In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.展开更多
Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser...Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.展开更多
文摘Construction of LNG receiving terminals The scale of receiving terminals is expanding rapidly At the end of 1999,the state approved the Guangdong LNG Pilot Project,which opened the prelude to the construction of LNG receiving terminals.In 2006,China's first LNG receiving terminal,namely Dapeng LNG Receiving Terminal in Shenzhen,Guangdong Province,was put into operation,marking the beginning of the use of overseas natural gas in China.
文摘Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.
基金the Project of the Science and Technology Commission of Shanghai Municipality(No.20142201300)the National Facility for Translational Medicine(Shanghai)Open Project Foundation(No.TMSK-2021-302)the China Postdoctoral Science Foundation(No.2023M732267)。
文摘An optimizing method for designing the wireless power receiving coil(RC)is proposed in this paper to address issues such as insufficient and fluctuating power supply in the near-infrared capsule robot.An elec-tromagnetic and circuit analysis is conducted to establish the magnetic induction intensity and equivalent circuit models for the wireless power transmission system.Combining these models involves using the number of layers in each dimension as the optimization variable.Constraints are imposed based on the normalized standard deviation of the receiving-end load power and spatial dimensions.At the same time,the optimization objective aims to maximize the average power of the receiving-end load.This process leads to formulating an optimization model for the RC.Finally,three-dimensional RCs with three different sets of parameters are wound,and the receiving-end load power of these coils is experimentally tested under various drive currents.The experimental values of the receiving-end load power exhibit a consistent trend with theoretical values,with experimental values consistently lower than theoretical values.The optimized coil parameters are determined by conducting comparative exper-iments,with a theoretical value of 4.6%for the normalized standard deviation of the receiving-end load power and an average experimental value of 9.6%.The study addressed the power supply issue of near-infrared capsule robots,which is important for early diagnosing and treating gastrointestinal diseases.
基金supported by the National Key R&D Program of China (2023YFB2905605)the National Natural Science Foundation of China (62072229)。
文摘In this paper,we investigate a distributed multi-input multi-output and orthogonal frequency division multiplexing(MIMO-OFDM) dual-functional radar-communication(DFRC) system,which enables simultaneous communication and sensing in different subcarrier sets.To obtain the best tradeoff between communication and sensing performance,we first derive Cramer-Rao Bound(CRB) of targets in detection area,and then maximize the transmission rate by jointly optimizing the power/subcarriers allocation and the selection of radar receivers under the constraints of detection performance and total transmit power.To tackle the non-convex mixed integer programming problem,we decompose the original problem into a semidefinite programming(SDP) problem and a convex quadratic integer problem and solve them iteratively.The numerical results demonstrate the effectiveness of our proposed algorithm,as well as the performance improvement brought by optimizing radar receivers selection.
基金supported in part by the National Natural Science Foundation of China under Grant 62071094in part by the National Key Laboratory of Wireless Communications Foundation under Grant IFN202402in part by the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation under Grant GZC20240217.
文摘To enable simultaneous transmit and receive(STAR)on the same frequency in a densely deployed space with multi-interference sources,this work proposes a digitally-assisted analog selfinterference cancellation method,which can acquire reference signals through flexible wired/wireless switching access.Based on this method,the Minimum Mean Square Error algorithm with known channel state information is derived in detail,determining the upper limit of the cancellation performance,and the Adaptive Dithered Linear Search algorithm for real-time engineering cancellation is given.The correctness of theoretical analysis is verified by the practical self-interference channel measured by a vector network analyzer.Furthermore,we have designed and implemented the corresponding multiinterference cancellation prototype with the digitallyassisted structure,capable of handling multiple interferences(up to three)and supporting a large receive bandwidth of 100 MHz as well as a wide frequency coverage from 30 MHz to 3000 MHz.Prototype test results demonstrate that in the presence of three interferences,when the single interference bandwidth is 0.2/2/20 MHz(corresponding to the receive bandwidth of 2/20/100 MHz),the cancellation performance can reach 46/32/22 dB or more.
基金supported by the National Natural Science Foundation of China(No.41304115)National Key S&T Special Projects(No.2016ZX050 24001-003)+2 种基金Open Fund for Sichuan Province Key Laboratory of Natural Gas Geology(No.2015trqdz02)the Research Project,CNPC(No.2016A-33)"Young and Middle-aged Key Teachers"Training Program in Southwest Petroleum University
文摘Currently, the selection of receiving traces in geometry design is mostly based on the horizontal layered medium hypothesis, which is unable to meet survey requirements in a complex area. This paper estimates the optimal number of receiving traces in field geometry using a numerical simulation based on a field test conducted in previous research (Zhu et al., 2011). A mathematical model is established for total energy and average efficiency energy using fixed trace spacing and optimal receiving traces are estimated. Seismic data acquired in a complex work area are used to verify the correctness of the proposed method. Results of model data calculations and actual data processing show that results are in agreement. This indicates that the proposed method is reasonable, correct, sufficiently scientific, and can be regarded as a novel method for use in seismic geometry design in complex geological regions.
文摘A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving 50 ft transmission lines and a pair of feedback networks for offset cancellation. At a positive supply voltage of 2 V and a negative supply voltage of - 2V, the power dissipation is about 280 mW. The small-signal gain is higher than 46 dB and the input dynamic range is about 40 dB with a constant single-ended output voltage swing of 400 mV. Satisfactory eye-diagrams are obtained at the bit rate of 12 Gbit/s limited by the test set-up. The chip area is 1.15 mm ×0.7 mm.
基金TheNationalNaturalScienceFoundationofChina (No .60 3 90 5 40 ) .
文摘Several space-time coding based transmit diversity techniques for wideband code division multiple access (WCDMA) systems with four transmitter antennas are investigated. Performances of the rake receivers are analyzed and compared with those of the multi-antenna receive diversity techniques. Theoretical analysis shows that the multi-antenna transmit diversity techniques provide considerable performance gain at the mobile receiver in the wireless channel with less inherent multipath diversity, especially the G4 coding based scheme. Compared with the multi-antenna receive diversity techniques with the same diversity order, the transmit diversity techniques introduce much more multi-access plus multipath interference and require measures of interference suppression in the multi-user environments.
文摘This paper considers the design of iterative receivers for space-frequencyblock-coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in unknown wirelessdispersive fading channels. An iterative joint channel estimation and symbol detection algorithm isderived. In the algorithm, the channel estimator performs alternately in two modes. During thetraining mode, the channel state information (CSI) is obtained by a discrete-Fourier-transform-basedchannel estimator and the noise variance and covariance matrix of the channel response is estimatedby the proposed method. In the data transmission mode, the CSI and transmitted data is obtainediteratively. In order to suppress the error propagation caused by a random error in identifyingsymbols, a simple error propagation detection criterion is proposed and an adaptive training schemeis applied to suppress the error propagation. Both theoretical analysis and simulation results showthat this algorithm gives better bit-error-rate performance and saves the overhead of OFDM systems.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金The National Natural Science Foundation of China(No.61320106003,61222102)the National High Technology Research and Development Program of China(863 Program)(No.2012AA01A506)
文摘A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems. An iterative solution is proposed to solve the MAP-based problem and an interference rejection combining (IRC) receiver is derived to suppress co-channel interference (CCI) based on the estimated CFR and SCM. Furthermore, considering the property of SCM, i. e., Hermitian and semi-definite, two schemes are proposed to improve the accuracy of SCM estimation. The first scheme is proposed to parameterize the SCM via a sum of a series of matrices in the time domain. The second scheme measures the SCM on each subcarrier as a low-rank model while the model order can be chosen through the penalized-likelihood approach. Simulation results are provided to demonstrate the effectiveness of the proposed method.
文摘In this paper,the performance of uplink multiuser massive multiple-input multipleoutput(MIMO)system with spatial modulation over transmit-correlated Rayleigh fading channel is investigated,where a large number of antennas are deployed at the base station and linear zero-forcing(ZF)receiver is employed for detection.By taking the transmit correlation and the randomness of shadow fading in to account,the bit error rate(BER)performance of the system is analyzed.According to the performance analysis,an approximated expression of overall average BER of the system is attained.Besides,asymptotic performance is studied and the corresponding BER expression at high signal-to-noise ratio is derived.On this basis,the diversity gain of the system can be obtained for performance evaluation.Simulation results show that the derived theoretical expressions match the simulated values well,which verifies the correctness of our analysis.
基金This work was supported by the National Natu-ral Science Foundation of China(No.U20B2038,No.61901520,No.61871398 and No.61931011),the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030),and the National Key R&D Program of China under Grant 2018YFB1801103.
文摘In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.
基金supported in part by the National Natural Science Foundation of China(Nos.61101180,61401491 and 61490692)
文摘Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2008AA12A216)
文摘According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.
基金supported by a fund from the Key Project of Natural Science Foundation of Tianjin [16JCZDJC36100]Medical and Health Technology Innovation Project of the Chinese Academy of Medical Sciences [2017-I2M-1-016]+2 种基金Fundamental Research Funds for the Central Universities [3332018116]PUMC Youth Fund [3332015101]Fundamental Research Funds for CAMS&PUMC [2016ZX310074]
文摘Hyperthyroidism refers to a clinical state that results from inappropriately hight hyroid hormone levels in the tissues;.Ⅰ-131 therapy plays a critical role and provides a remarkable curative effect in targeting thyroid diseases. Thyroid cells can take up isotope I-131, which emits not only beta rays but also
基金This work is supported by Climate Change Institute,Universiti Kebangsaan Malaysia.
文摘The paper proposes an Indoor Localization System(ILS)which uses only one fixed Base Station(BS)with simple non-reconfigurable antennas.The proposed algorithm measures Received Signal Strength(RSS)and maps it to the location in the room by estimating signal strength of a direct line of sight(LOS)signal and signal of the first order reflection from the wall.The algorithm is evaluated through both simulations and empirical measurements in a furnished open space office,sampling 21 different locations in the room.It is demonstrated the system can identify user’s real-time location with a maximum estimation error below 0.7 m for 80%confidence Cumulative Distribution Function(CDF)user level,demonstrating the ability to accurately estimate the receiver’s location within the room.The system is intended as a cost-efficient indoor localization technique,offering simplicity and easy integration with existing wireless communication systems.Unlike comparable single base station localization techniques,the proposed system does not require beam scanning,offering stable communication capacity while performing the localization process.
文摘Position, velocity, and timing(PVT) signals from the Global Positioning System(GPS)are used throughout the world but the availability and reliability of these signals in all environments has become a subject of concern for both civilian and military applications. This presentation summarizes recent advances in navigation sensor technology, including GPS, inertial, and other navigation aids that address these concerns. Also addressed are developments in sensor integration technology with several examples described, including the Bluefin-21 system mechanization.
基金Supported by the National Natural Science Foundation of China (No.60496311)China High-Tech 863 Plan (No.2006AA01Z264).
文摘In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.
基金supported in part by National Natural Science Foundation of China (no. 61571373, no. 61501383, no. U1734209, no. U1709219)in part by Key International Cooperation Project of Sichuan Province (no. 2017HH0002)+2 种基金in part by Marie Curie Fellowship (no. 792406)in part by the National Science and Technology Major Project under Grant 2016ZX03001018-002in part by NSFC China-Swedish project (no. 6161101297)
文摘Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.