The evidential reasoning(ER)rule framework has been widely applied in multi-attribute decision analysis and system assessment to manage uncertainty.However,traditional ER implementations rely on two critical limitatio...The evidential reasoning(ER)rule framework has been widely applied in multi-attribute decision analysis and system assessment to manage uncertainty.However,traditional ER implementations rely on two critical limitations:1)unrealistic assumptions of complete evidence independence,and 2)a lack of mechanisms to differentiate causal relationships from spurious correlations.Existing similarity-based approaches often misinterpret interdependent evidence,leading to unreliable decision outcomes.To address these gaps,this study proposes a causality-enhanced ER rule(CER-e)framework with three key methodological innovations:1)a multidimensional causal representation of evidence to capture dependency structures;2)probabilistic quantification of causal strength using transfer entropy,a model-free information-theoretic measure;3)systematic integration of causal parameters into the ER inference process while maintaining evidential objectivity.The PC algorithm is employed during causal discovery to eliminate spurious correlations,ensuring robust causal inference.Case studies in two types of domains—telecommunications network security assessment and structural risk evaluation—validate CER-e’s effectiveness in real-world scenarios.Under simulated incomplete information conditions,the framework demonstrates superior algorithmic robustness compared to traditional ER.Comparative analyses show that CER-e significantly improves both the interpretability of causal relationships and the reliability of assessment results,establishing a novel paradigm for integrating causal inference with evidential reasoning in complex system evaluation.展开更多
The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the ...The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification.展开更多
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal...This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.展开更多
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.展开更多
This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China ...This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China Family Panel Studies(CFPS)data,1491 children(girls ratio=53.78%;average grade=6.023 years,school grade standard deviation=1.825 years).Results following multiple regression model(OLS)show that the higher the parental cognitive ability,the higher the children’s logical reasoning ability.Secondly,parental academic expectation serves as a mediator between their cognitive ability and children’s logical reasoning ability for higher logical reasoning by children.Third,a possible family environment acts as a mediator in the relationship between parents’cognitive ability and children’s logical reasoning ability to be higher.We conclude from thesefindings that parents with high cognitive abilities can enhance their children’s logical reasoning skills not only by setting higher academic expectations,but also by cultivating a supportive family environment.Thesefindings imply a need for intervention to improve family quality of life to enhance children’s thinking abilities to optimize their academic learning.展开更多
Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,ca...Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,called event evolution patterns,implying informative temporal dependencies between events.Recently,many extrapolation works on TKGs have been devoted to modelling these evolutional patterns,but the task is still far from resolved because most existing works simply rely on encoding these patterns into entity representations while overlooking the significant information implied by relations of evolutional patterns.However,the authors realise that the temporal dependencies inherent in the relations of these event evolution patterns may guide the follow-up event prediction to some extent.To this end,a Temporal Relational Context-based Temporal Dependencies Learning Network(TRenD)is proposed to explore the temporal context of relations for more comprehensive learning of event evolution patterns,especially those temporal dependencies caused by interactive patterns of relations.Trend incorporates a semantic context unit to capture semantic correlations between relations,and a structural context unit to learn the interaction pattern of relations.By learning the temporal contexts of relations semantically and structurally,the authors gain insights into the underlying event evolution patterns,enabling to extract comprehensive historical information for future prediction better.Experimental results on benchmark datasets demonstrate the superiority of the model.展开更多
Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent r...Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent recognition techniques.Facing with the challenge,a target intention causal analysis paradigm is proposed by combining with an Intervention Retrieval(IR)model and a Hybrid Intention Recognition(HIR)model.The target data acquired by the sensors are modelled as Basic Probability Assignments(BPAs)based on evidence theory to create uncertain datasets.Then,the HIR model is utilized to recognize intent for a tested sample from uncertain datasets.Finally,the intervention operator under the evidence structure is utilized to perform attribute intervention on the tested sample.Data retrieval is performed in the sample database based on the IR model to generate the intention distribution of the pseudo-intervention samples to analyze the causal effects of individual sample attributes.The simulation results demonstrate that our framework successfully identifies the target intention under the evidence structure and goes further to analyze the causal impact of sample attributes on the target intention.展开更多
The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering bas...The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering based on General Mixture Decomposition Algorithm(GMDA-EC)is proposed.First,the belief classification of target cluster is carried out,and the sample category of target distribution overlapping region is extended.Then,on the basis of General Mixture Decomposition Algorithm(GMDA)clustering,the fusion model of evidence credibility and evidence relative entropy is constructed to generate the basic probability assignment of the target and achieve the belief division of the target.Finally,the performance of the algorithm is verified by the synthetic dataset and the measured dataset.The experimental results show that the algorithm can reflect the uncertainty of target clustering results more comprehensively than the traditional probabilistic partition clustering algorithm.展开更多
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these be...The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems.展开更多
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is...Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.展开更多
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The...Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.展开更多
In this paper,we combine the teaching and learning situation of deaf and hard-of-hearing students in the Linear Algebra course of the Computer Science and Technology major at the Nanjing Normal University of Special E...In this paper,we combine the teaching and learning situation of deaf and hard-of-hearing students in the Linear Algebra course of the Computer Science and Technology major at the Nanjing Normal University of Special Education.Based on the cognitive style of deaf and hard-of-hearing students,we apply example induction,exhaustive induction,and mathematical induction to the teaching of Linear Algebra by utilizing specific course content.The aim is to design comprehensive teaching that caters to the cognitive style characteristics of deaf and hard-of-hearing students,strengthen their mathematical thinking styles such as quantitative thinking,algorithmic thinking,symbolic thinking,visual thinking,logical thinking,and creative thinking,and enhance the effectiveness of classroom teaching and learning outcomes in Linear Algebra for deaf and hard-of-hearing students.展开更多
Plausible reasoning is an important approach to reasoning conclusions.In order to cultivate students’habits and abilities to use plausible reasoning,we should give the students a chance to imitate and practice plausi...Plausible reasoning is an important approach to reasoning conclusions.In order to cultivate students’habits and abilities to use plausible reasoning,we should give the students a chance to imitate and practice plausible reasoning in our teaching.For our linear algebra course,most of the definitions and theorems in popular linear algebra textbooks are given directly.Thus,we give a concrete process that rediscovers determinant expansion on row or column theorem through plausible reasoning during our teaching to give the students the chance to learn the reasoning.展开更多
presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic co...presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic consequence relation with the connective-free form can be represented by ADRFs.展开更多
Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is...Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is developed with three layer structures (the database, the Web server and the client server) to realize CAPP online services. In the CAPP software package, a new process planning method called the successive casebased reasoning is presented. Using the method, process planning procedures are divided into three layers (the process planning, the process procedure and the process step), which are treated with the successive process reasoning. Process planning rules can be regularly described due to the granularity-based rule classification. The CAPP software package combines CAPP software with online services. The process planning has the features of variant analogy and generative creation due to adopting the successive case-based reasoning, thus improving the universality and the practicability of the process planning.展开更多
The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reas...The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.展开更多
基金supported by the Natural Science Foundation of China(Nos.U22A2099,62273113,62203461,62203365)the Innovation Project of Guangxi Graduate Education under Grant YCBZ2023130by the Guangxi Higher Education Undergraduate Teaching Reform Project Key Project,grant number 2022JGZ130.
文摘The evidential reasoning(ER)rule framework has been widely applied in multi-attribute decision analysis and system assessment to manage uncertainty.However,traditional ER implementations rely on two critical limitations:1)unrealistic assumptions of complete evidence independence,and 2)a lack of mechanisms to differentiate causal relationships from spurious correlations.Existing similarity-based approaches often misinterpret interdependent evidence,leading to unreliable decision outcomes.To address these gaps,this study proposes a causality-enhanced ER rule(CER-e)framework with three key methodological innovations:1)a multidimensional causal representation of evidence to capture dependency structures;2)probabilistic quantification of causal strength using transfer entropy,a model-free information-theoretic measure;3)systematic integration of causal parameters into the ER inference process while maintaining evidential objectivity.The PC algorithm is employed during causal discovery to eliminate spurious correlations,ensuring robust causal inference.Case studies in two types of domains—telecommunications network security assessment and structural risk evaluation—validate CER-e’s effectiveness in real-world scenarios.Under simulated incomplete information conditions,the framework demonstrates superior algorithmic robustness compared to traditional ER.Comparative analyses show that CER-e significantly improves both the interpretability of causal relationships and the reliability of assessment results,establishing a novel paradigm for integrating causal inference with evidential reasoning in complex system evaluation.
文摘The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification.
基金supported by the National Key Research&Development Program of China(2021YFB3301100)the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406).
文摘This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.
文摘In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
基金supported by scientific research fund of Jiangxi Provincial Social Sciences“14th Five-Year Plan”(No.23SH05).
文摘This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China Family Panel Studies(CFPS)data,1491 children(girls ratio=53.78%;average grade=6.023 years,school grade standard deviation=1.825 years).Results following multiple regression model(OLS)show that the higher the parental cognitive ability,the higher the children’s logical reasoning ability.Secondly,parental academic expectation serves as a mediator between their cognitive ability and children’s logical reasoning ability for higher logical reasoning by children.Third,a possible family environment acts as a mediator in the relationship between parents’cognitive ability and children’s logical reasoning ability to be higher.We conclude from thesefindings that parents with high cognitive abilities can enhance their children’s logical reasoning skills not only by setting higher academic expectations,but also by cultivating a supportive family environment.Thesefindings imply a need for intervention to improve family quality of life to enhance children’s thinking abilities to optimize their academic learning.
基金supported in part by the National Natural Science Foundation of China(No.62302507)and the funding of Harbin Institute of Technology(Shenzhen)(No.20210035).
文摘Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,called event evolution patterns,implying informative temporal dependencies between events.Recently,many extrapolation works on TKGs have been devoted to modelling these evolutional patterns,but the task is still far from resolved because most existing works simply rely on encoding these patterns into entity representations while overlooking the significant information implied by relations of evolutional patterns.However,the authors realise that the temporal dependencies inherent in the relations of these event evolution patterns may guide the follow-up event prediction to some extent.To this end,a Temporal Relational Context-based Temporal Dependencies Learning Network(TRenD)is proposed to explore the temporal context of relations for more comprehensive learning of event evolution patterns,especially those temporal dependencies caused by interactive patterns of relations.Trend incorporates a semantic context unit to capture semantic correlations between relations,and a structural context unit to learn the interaction pattern of relations.By learning the temporal contexts of relations semantically and structurally,the authors gain insights into the underlying event evolution patterns,enabling to extract comprehensive historical information for future prediction better.Experimental results on benchmark datasets demonstrate the superiority of the model.
基金partially supported by the National Natural Science Foundation of China(No.62173272)。
文摘Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent recognition techniques.Facing with the challenge,a target intention causal analysis paradigm is proposed by combining with an Intervention Retrieval(IR)model and a Hybrid Intention Recognition(HIR)model.The target data acquired by the sensors are modelled as Basic Probability Assignments(BPAs)based on evidence theory to create uncertain datasets.Then,the HIR model is utilized to recognize intent for a tested sample from uncertain datasets.Finally,the intervention operator under the evidence structure is utilized to perform attribute intervention on the tested sample.Data retrieval is performed in the sample database based on the IR model to generate the intention distribution of the pseudo-intervention samples to analyze the causal effects of individual sample attributes.The simulation results demonstrate that our framework successfully identifies the target intention under the evidence structure and goes further to analyze the causal impact of sample attributes on the target intention.
基金co-supported by the Youth Foundation of National Science Foundation of China(No.62001503)the Excellent Youth Scholar of the National Defense Science and Technology Foundation of China(No.2017-JCJQ-ZQ-003)the Special Fund for Taishan Scholar Project,China(No.ts201712072)。
文摘The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering based on General Mixture Decomposition Algorithm(GMDA-EC)is proposed.First,the belief classification of target cluster is carried out,and the sample category of target distribution overlapping region is extended.Then,on the basis of General Mixture Decomposition Algorithm(GMDA)clustering,the fusion model of evidence credibility and evidence relative entropy is constructed to generate the basic probability assignment of the target and achieve the belief division of the target.Finally,the performance of the algorithm is verified by the synthetic dataset and the measured dataset.The experimental results show that the algorithm can reflect the uncertainty of target clustering results more comprehensively than the traditional probabilistic partition clustering algorithm.
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
文摘The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems.
文摘Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.
文摘Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.
文摘In this paper,we combine the teaching and learning situation of deaf and hard-of-hearing students in the Linear Algebra course of the Computer Science and Technology major at the Nanjing Normal University of Special Education.Based on the cognitive style of deaf and hard-of-hearing students,we apply example induction,exhaustive induction,and mathematical induction to the teaching of Linear Algebra by utilizing specific course content.The aim is to design comprehensive teaching that caters to the cognitive style characteristics of deaf and hard-of-hearing students,strengthen their mathematical thinking styles such as quantitative thinking,algorithmic thinking,symbolic thinking,visual thinking,logical thinking,and creative thinking,and enhance the effectiveness of classroom teaching and learning outcomes in Linear Algebra for deaf and hard-of-hearing students.
文摘Plausible reasoning is an important approach to reasoning conclusions.In order to cultivate students’habits and abilities to use plausible reasoning,we should give the students a chance to imitate and practice plausible reasoning in our teaching.For our linear algebra course,most of the definitions and theorems in popular linear algebra textbooks are given directly.Thus,we give a concrete process that rediscovers determinant expansion on row or column theorem through plausible reasoning during our teaching to give the students the chance to learn the reasoning.
文摘presented The conceptions of abstract default reasoning frameworks (ADRFs) and D-consequence relations are Based on representation properties of D-consequence relations, it proves that any cumulative nonmonotonic consequence relation with the connective-free form can be represented by ADRFs.
文摘Aiming at practical demands of manufacturing enterprises to the CAPP system in the Internet age, the CAPP model is presented based on Web and featured by open, universality and intelligence. A CAPP software package is developed with three layer structures (the database, the Web server and the client server) to realize CAPP online services. In the CAPP software package, a new process planning method called the successive casebased reasoning is presented. Using the method, process planning procedures are divided into three layers (the process planning, the process procedure and the process step), which are treated with the successive process reasoning. Process planning rules can be regularly described due to the granularity-based rule classification. The CAPP software package combines CAPP software with online services. The process planning has the features of variant analogy and generative creation due to adopting the successive case-based reasoning, thus improving the universality and the practicability of the process planning.
基金The National Natural Science Foundation of China(No60403016),the Weaponry Equipment Foundation of PLA Equip-ment Ministry (No51406020105JB8103)
文摘The current extended fuzzy description logics lack reasoning algorithms with TBoxes. The problem of the satisfiability of the extended fuzzy description logic EFALC cut concepts w. r. t. TBoxes is proposed, and a reasoning algorithm is given. This algorithm is designed in the style of tableau algorithms, which is usually used in classical description logics. The transformation rules and the process of this algorithm is described and optimized with three main techniques: recursive procedure call, branch cutting and introducing sets of mesne results. The optimized algorithm is proved sound, complete and with an EXPTime complexity, and the satisfiability problem is EXPTime-complete.