Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal sca...Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications.展开更多
This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonst...This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle...The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,r...Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,reservoir computing(RC)framework,which leverages straightforward training methods and efficient temporal signal processing,has emerged as a promising scheme.While various physical reservoir devices,including ferroelectric,optoelectronic,and memristor-based systems,have been demonstrated,many still face challenges related to compatibility with mainstream complementary metal oxide semiconductor(CMOS)integration processes.This study introduced a silicon-based schottky barrier metal-oxide-semiconductor field effect transistor(SB-MOSFET),which was fabricated under low thermal budget and compatible with back-end-of-line(BEOL).The device demonstrated short-term memory characteristics,facilitated by the modulation of schottky barriers and charge trapping.Utilizing these characteristics,a RC system for temporal data processing was constructed,and its performance was validated in a 5×4 digital classification task,achieving an accuracy exceeding 98%after 50 training epochs.Furthermore,the system successfully processed temporal signal in waveform classification and prediction tasks using time-division multiplexing.Overall,the SB-MOSFET's high compatibility with CMOS technology provides substantial advantages for large-scale integration,enabling the development of energy-efficient reservoir computing hardware.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in de...BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in detecting precancerous lesions.In contrast,real-time computer-aided detection(CAD)systems enhanced by artificial intelligence(AI)systems,although they may increase unnecessary medical procedures,can provide immediate feedback during examination,thereby improving the accuracy of lesion detection.This article aims to conduct a meta-analysis of the diagnostic performance of CAD systems in identifying precancerous lesions of UGI tract cancer during esophagogastroduodenoscopy(EGD),evaluate their potential clinical application value,and determine the direction for further research.AIM To investigate the improvement of the efficiency of EGD examination by the realtime AI-enabled real-time CAD system(AI-CAD)system.METHODS PubMed,EMBASE,Web of Science and Cochrane Library databases were searched by two independent reviewers to retrieve literature with per-patient analysis with a deadline up until April 2025.A meta-analysis was performed with R Studio software(R4.5.0).A random-effects model was used and subgroup analysis was carried out to identify possible sources of heterogeneity.RESULTS The initial search identified 802 articles.According to the inclusion criteria,2113 patients from 10 studies were included in this meta-analysis.The pooled accuracy difference,logarithmic difference of diagnostic odds ratios,sensitivity,specificity and the area under the summary receiver operating characteristic curve(area under the curve)of both AI group and endoscopist group for detecting precancerous lesion were 0.16(95%CI:0.12-0.20),-0.19(95%CI:-0.75-0.37),0.89(95%CI:0.85-0.92,AI group),0.67(95%CI:0.63-0.71,endoscopist group),0.89(95%CI:0.84-0.93,AI group),0.77(95%CI:0.70-0.83,endoscopist group),0.928(95%CI:0.841-0.948,AI group),0.722(95%CI:0.677-0.821,endoscopist group),respectively.CONCLUSION The present studies further provide evidence that the AI-CAD is a reliable endoscopic diagnostic tool that can be used to assist endoscopists in detection of precancerous lesions in the UGI tract.It may be introduced on a large scale for clinical application to enhance the accuracy of detecting precancerous lesions in the UGI tract.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless contr...Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless control in fog computing. RT-Notification provides low-latency TDMA communication between an access point in Fog and a large number of portable monitoring devices equipped with sensor and actuator. RT-Notification differentiates two types of controls: urgent downlink actuator-oriented control and normal uplink access & scheduling control. Different from existing protocols, RT-Notification has two salient features:(i) support real-time notification of control frames, while not interrupting ongoing other transmissions, and(ii) support on-demand channel allocation for normal uplink access & scheduling control. RT-Notification can be implemented based on the commercial off-the-shelf 802.11 hardware. Our extensive simulations verify that RT-Notification is very effective in supporting the above two features.展开更多
A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay ex...A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics on computers, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation paranleters in a real-time fashion. One of the technical challenges when creating a real-time 3D simulation is balancing the 3D rendering and the computing performance. Graphics processor unit (GPU) programming plays an essential role in balancing the millions of tasks, and makes this real-time 3D simulation possible. By the use of general-purpose computing on graphics processing units (GPGPU) programming we are able to run the simulation in a massively parallel fashion, even when dealing with more complex interactions between microtubules such as overriding and snuggling. Due to performance being an important factor, a performance n, odel has also been constructed from the analysis of the microtubule simulation and it is consistent with the performance measurements on different GPGPU architectures with regards to the number of cores and clock cycles.展开更多
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful i...For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ...Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.展开更多
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ...Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
基金supported by the National Key Research and Development Program of China under Grant 2022YFB3608300in part by the National Nature Science Foundation of China(NSFC)under Grants 62404050,U2341218,62574056,62204052。
文摘Organic electrochemical transistor(OECT)devices demonstrate great promising potential for reservoir computing(RC)systems,but their lack of tunable dynamic characteristics limits their application in multi-temporal scale tasks.In this study,we report an OECT-based neuromorphic device with tunable relaxation time(τ)by introducing an additional vertical back-gate electrode into a planar structure.The dual-gate design enablesτreconfiguration from 93 to 541 ms.The tunable relaxation behaviors can be attributed to the combined effects of planar-gate induced electrochemical doping and back-gateinduced electrostatic coupling,as verified by electrochemical impedance spectroscopy analysis.Furthermore,we used theτ-tunable OECT devices as physical reservoirs in the RC system for intelligent driving trajectory prediction,achieving a significant improvement in prediction accuracy from below 69%to 99%.The results demonstrate that theτ-tunable OECT shows a promising candidate for multi-temporal scale neuromorphic computing applications.
基金the National Natural Science Foundation of China(No.U23A20322)the National Key Research and Development Program of China(Nos.2023YFF0719600,2021YFA1202600,and 2021YFB4000800)+4 种基金the CAS Project for Young Scientists in Basic Research(No.YSBR-113)the Ningbo Technology Project(No.2022A-007-C)the Hunan Provincial Natural Science Foundation(Nos.2023JJ50009,2025JJ60351,and 2023JJ30599)the Foundation of Innovation Center of Radiation Application(No.KFZC2023020701)the Major Scientific and Technological Innovation Platform Project of Hunan Province(No.2024JC1003).
文摘This work presents a high-stability self-rectifying memristor(SRM)array based on the Pt/TaO_(x)/Ti structure,with an indepth investigation of the performance and potential applications of the device.The device demonstrates excellent rectification and on/off ratios,along with low-power readout,multi-state storage,and multi-level switching capabilities,highlighting its practicality and adaptability.Notably,the device exhibits outstanding fluctuation suppression and exceptional uniformity.The coefficient of variation(CV)of the rectification ratio,calculated as 0.11497 at 3 V,indicates its high stability under multiple cycles and low-voltage operation,making it well-suited for large-scale integration and operational applications.Moreover,the stability of the rectification ratio further reinforces its potential as a hardware foundation for large-scale inmemory computing systems.By combining the neuromorphic characteristics of the device with a simulated annealing algorithm and optimizing the annealing temperature function,the system emulates biological neuron behavior,enabling fast and efficient image restoration tasks.Experimental results demonstrate that this approach significantly outperforms traditional algorithms in both optimization speed and repair accuracy.The present study offers a novel perspective for the design of in-memory computing hardware and showcases promising applications in neuromorphic computing and image processing.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051)+5 种基金Open Research Fund of State Key Laboratory of Materials for Integrated Circuits(SKLJC-K2024-12)the Shanghai Sailing Program(23YF1402200,23YF1402400)Natural Science Foundation of Jiangsu Province(BK20240424)Taishan Scholar Foundation of Shandong Province(tsqn202408006)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University.
文摘The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
基金supported in part by the Chinese Academy of Sciences(No.XDA0330302)NSFC program(No.22127901)。
文摘Neuromorphic devices have garnered significant attention as potential building blocks for energy-efficient hardware systems owing to their capacity to emulate the computational efficiency of the brain.In this regard,reservoir computing(RC)framework,which leverages straightforward training methods and efficient temporal signal processing,has emerged as a promising scheme.While various physical reservoir devices,including ferroelectric,optoelectronic,and memristor-based systems,have been demonstrated,many still face challenges related to compatibility with mainstream complementary metal oxide semiconductor(CMOS)integration processes.This study introduced a silicon-based schottky barrier metal-oxide-semiconductor field effect transistor(SB-MOSFET),which was fabricated under low thermal budget and compatible with back-end-of-line(BEOL).The device demonstrated short-term memory characteristics,facilitated by the modulation of schottky barriers and charge trapping.Utilizing these characteristics,a RC system for temporal data processing was constructed,and its performance was validated in a 5×4 digital classification task,achieving an accuracy exceeding 98%after 50 training epochs.Furthermore,the system successfully processed temporal signal in waveform classification and prediction tasks using time-division multiplexing.Overall,the SB-MOSFET's high compatibility with CMOS technology provides substantial advantages for large-scale integration,enabling the development of energy-efficient reservoir computing hardware.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
文摘BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in detecting precancerous lesions.In contrast,real-time computer-aided detection(CAD)systems enhanced by artificial intelligence(AI)systems,although they may increase unnecessary medical procedures,can provide immediate feedback during examination,thereby improving the accuracy of lesion detection.This article aims to conduct a meta-analysis of the diagnostic performance of CAD systems in identifying precancerous lesions of UGI tract cancer during esophagogastroduodenoscopy(EGD),evaluate their potential clinical application value,and determine the direction for further research.AIM To investigate the improvement of the efficiency of EGD examination by the realtime AI-enabled real-time CAD system(AI-CAD)system.METHODS PubMed,EMBASE,Web of Science and Cochrane Library databases were searched by two independent reviewers to retrieve literature with per-patient analysis with a deadline up until April 2025.A meta-analysis was performed with R Studio software(R4.5.0).A random-effects model was used and subgroup analysis was carried out to identify possible sources of heterogeneity.RESULTS The initial search identified 802 articles.According to the inclusion criteria,2113 patients from 10 studies were included in this meta-analysis.The pooled accuracy difference,logarithmic difference of diagnostic odds ratios,sensitivity,specificity and the area under the summary receiver operating characteristic curve(area under the curve)of both AI group and endoscopist group for detecting precancerous lesion were 0.16(95%CI:0.12-0.20),-0.19(95%CI:-0.75-0.37),0.89(95%CI:0.85-0.92,AI group),0.67(95%CI:0.63-0.71,endoscopist group),0.89(95%CI:0.84-0.93,AI group),0.77(95%CI:0.70-0.83,endoscopist group),0.928(95%CI:0.841-0.948,AI group),0.722(95%CI:0.677-0.821,endoscopist group),respectively.CONCLUSION The present studies further provide evidence that the AI-CAD is a reliable endoscopic diagnostic tool that can be used to assist endoscopists in detection of precancerous lesions in the UGI tract.It may be introduced on a large scale for clinical application to enhance the accuracy of detecting precancerous lesions in the UGI tract.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
基金supported by Macao FDCTMOST grant001/2015/AMJMacao FDCT grants 005/2016/A1, and 056/2017/A2
文摘Fog computing is an emerging paradigm that has broad applications including storage, measurement and control. In this paper, we propose a novel real-time notification protocol called RT-Notification for wireless control in fog computing. RT-Notification provides low-latency TDMA communication between an access point in Fog and a large number of portable monitoring devices equipped with sensor and actuator. RT-Notification differentiates two types of controls: urgent downlink actuator-oriented control and normal uplink access & scheduling control. Different from existing protocols, RT-Notification has two salient features:(i) support real-time notification of control frames, while not interrupting ongoing other transmissions, and(ii) support on-demand channel allocation for normal uplink access & scheduling control. RT-Notification can be implemented based on the commercial off-the-shelf 802.11 hardware. Our extensive simulations verify that RT-Notification is very effective in supporting the above two features.
基金supported by a Grant-in-Aid for Scientific Research on Innovation Areas "Molecular Robotics"(No.24104004) of the Ministry of Education,Culture,Sports,Science,and Technology,Japan
文摘A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics on computers, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation paranleters in a real-time fashion. One of the technical challenges when creating a real-time 3D simulation is balancing the 3D rendering and the computing performance. Graphics processor unit (GPU) programming plays an essential role in balancing the millions of tasks, and makes this real-time 3D simulation possible. By the use of general-purpose computing on graphics processing units (GPGPU) programming we are able to run the simulation in a massively parallel fashion, even when dealing with more complex interactions between microtubules such as overriding and snuggling. Due to performance being an important factor, a performance n, odel has also been constructed from the analysis of the microtubule simulation and it is consistent with the performance measurements on different GPGPU architectures with regards to the number of cores and clock cycles.
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
文摘For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
基金supported by the"Science and Technology Development Plan Project of Jilin Province,China"(Grant No.20240101018JJ)the Fundamental Research Funds for the Central Universities(Grant No.2412023YQ004)the National Natural Science Foundation of China(Grant Nos.52072065,52272140,52372137,and U23A20568).
文摘Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system.
文摘Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.