Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem....Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.展开更多
Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artific...Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artificial intelligence(AI)have enabled the development of systems capable of mental health monitoring using multimodal data.However,existing models often struggle with contextual adaptation and real-time decision-making in dynamic settings.This paper addresses these challenges by proposing TRANS-HEALTH,a hybrid framework that integrates transformer-based inference with Belief-Desire-Intention(BDI)reasoning for real-time psychological distress detection.The framework utilizes a multimodal dataset containing EEG,GSR,heart rate,and activity data to predict distress while adapting to individual contexts.The methodology combines deep learning for robust pattern recognition and symbolic BDI reasoning to enable adaptive decision-making.The novelty of the approach lies in its seamless integration of transformermodelswith BDI reasoning,providing both high accuracy and contextual relevance in real time.Performance metrics such as accuracy,precision,recall,and F1-score are employed to evaluate the system’s performance.The results show that TRANS-HEALTH outperforms existing models,achieving 96.1% accuracy with 4.78 ms latency and significantly reducing false alerts,with an enhanced ability to engage users,making it suitable for deployment in wearable and remote healthcare environments.展开更多
In hybrid wireless sensor networks, sensor mobility causes the query areas to change dynamically. Aiming at the problem of inefficiency in processing the data aggregation queries in dynamic query areas, this paper pro...In hybrid wireless sensor networks, sensor mobility causes the query areas to change dynamically. Aiming at the problem of inefficiency in processing the data aggregation queries in dynamic query areas, this paper proposes a processing approach for event-based location aware queries (ELAQ), which includes query dissemination algorithm, maximum distance projection proxy selection algorithm, in-network query propagation, and aggregation algorithm. ELAQs are triggered by the events and the query results are dependent on mobile sensors' location, which are the characteristics of ELAQ model. The results show that compared with the TinyDB query processing approach, ELAQ processing approach increases the accuracy of the query result and decreases the query response time.展开更多
As one of the commonly used queries in modern databases, skyline query has received extensive attention from database research community. The uncertainty of the data in wireless sensor networks makes the corresponding...As one of the commonly used queries in modern databases, skyline query has received extensive attention from database research community. The uncertainty of the data in wireless sensor networks makes the corresponding skyline uncertain and not unique. This paper investigates the Pr-Skyline problem, i.e., how to compute the skyline with the highest existence probability in a computational and energy-efficient way. We formulate the problem and prove that it is NP-Complete and cannot be approximated in a given expression. However, the proposed algorithm SKY-SEARCH with pruning techniques can guarantee the computational efficiency given relatively large input size, while the filter-based distributed optimization strategy significantly reduces the transmission cost and the required storage space of the sensor nodes. Extensive experiments verify the efficiency and scalability of SKY-SEARCH and the distributed optimizing strategy.展开更多
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This...With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.展开更多
In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ...In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.展开更多
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
Nowadays,healthcare applications necessitate maximum volume of medical data to be fed to help the physicians,academicians,pathologists,doctors and other healthcare professionals.Advancements in the domain of Wireless ...Nowadays,healthcare applications necessitate maximum volume of medical data to be fed to help the physicians,academicians,pathologists,doctors and other healthcare professionals.Advancements in the domain of Wireless Sensor Networks(WSN)andMultimediaWireless Sensor Networks(MWSN)are tremendous.M-WMSN is an advanced form of conventional Wireless Sensor Networks(WSN)to networks that use multimedia devices.When compared with traditional WSN,the quantity of data transmission in M-WMSN is significantly high due to the presence of multimedia content.Hence,clustering techniques are deployed to achieve low amount of energy utilization.The current research work aims at introducing a new Density Based Clustering(DBC)technique to achieve energy efficiency inWMSN.The DBC technique is mainly employed for data collection in healthcare environment which primarily depends on three input parameters namely remaining energy level,distance,and node centrality.In addition,two static data collector points called Super Cluster Head(SCH)are placed,which collects the data from normal CHs and forwards it to the Base Station(BS)directly.SCH supports multi-hop data transmission that assists in effectively balancing the available energy.Adetailed simulation analysiswas conducted to showcase the superior performance of DBC technique and the results were examined under diverse aspects.The simulation outcomes concluded that the proposed DBC technique improved the network lifetime to a maximum of 16,500 rounds,which is significantly higher compared to existing methods.展开更多
Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data mu...Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.展开更多
Sensor networks provide means to link people with real world by processing data in real time collected from real-world and routing the query results to the right people. Application examples include continuous monitor...Sensor networks provide means to link people with real world by processing data in real time collected from real-world and routing the query results to the right people. Application examples include continuous monitoring of environment, building infrastructures and human health. Many researchers view the sensor networks as databases, and the monitoring tasks are performed as subscriptions, queries, and alert. However, this point is not precise. First, databases can only deal with well-formed data types, with well-defined schema for their interpretation, while the raw data collected by the sensor networks, in most cases, do not fit to this requirement. Second, sensor networks have to deal with very dynamic targets, environment and resources, while databases are more static. In order to fill this gap between sensor networks and databases, we propose a novel approach, referred to as 'spatiotemporal data stream segmentation', or 'stream segmentation' for short, to address the dynamic nature and deal with 'raw' data of sensor networks. Stream segmentation is defined using Bayesian Networks in the context of sensor networks, and two application examples are given to demonstrate the usefulness of the approach.展开更多
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve...A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.展开更多
HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The se...HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.展开更多
Wireless Sensor Networks (WSNs) typically use in-network processing to reduce the communication overhead. Due to the fusion of data items sourced at different nodes into a single one during in-network processing, the ...Wireless Sensor Networks (WSNs) typically use in-network processing to reduce the communication overhead. Due to the fusion of data items sourced at different nodes into a single one during in-network processing, the sanctity of the aggregated data needs to be ensured. Especially, the data integrity of the aggregated result is critical as any malicious update to it can jeopardize not one, but many sensor readings. In this paper, we analyse three different approaches to providing integrity support for SDA in WSNs. The first one is traditional MAC, in which each leaf node and intermediate node share a key with parent (symmetric key). The second is aggregate MAC (AMAC), in which a base station shares a unique key with all the other sensor nodes. The third is homomorphic MAC (Homo MAC) that is purely symmetric key-based approach. These approaches exhibit diverse trade-off in resource consumption and security assumptions. Adding together to that, we also propose a probabilistic and improved variant of homomorphic MAC that improves the security strength for secure data aggregation in WSNs. We carry out simulations in TinyOS environment to experimentally evaluate the impact of each of these on the resource consumption in WSNs.展开更多
Wind energy is one of the widely applied renewable energies in the world. Wind turbine as the main wind energy converter at present has very complex technical system containing a huge number of components,actuators an...Wind energy is one of the widely applied renewable energies in the world. Wind turbine as the main wind energy converter at present has very complex technical system containing a huge number of components,actuators and sensors. However, despite of the hardware redundancy, sensor faults have often affected the wind turbine normal operation and thus caused energy generation loss. In this paper, aiming at the wind turbine hydraulic pitch system, data-driven design of process monitoring(PM) and diagnosis has been realized in the wind turbine benchmark. Fault tolerant control(FTC) strategies focused on sensor faults have also been presented here, where with the implementation of soft sensor the sensor fault can be handled and the performance of the system is improved. The performance of this method is demonstrated with the wind turbine benchmark provided by Math Works.展开更多
Precision Livestock Farming studies are based on data that was measured from animals via technical devices. In the means of automation, it is usually not accounted for the animals’ reaction towards the devices or ind...Precision Livestock Farming studies are based on data that was measured from animals via technical devices. In the means of automation, it is usually not accounted for the animals’ reaction towards the devices or individual animal behaviour during the gathering of sensor data. In this study, 14 Holstein-Friesian cows were recorded with a 2D video camera while walking through a scanning passage comprising six Microsoft Kinect 3D cameras. Elementary behavioural traits like how long the cows avoided the passage, the time they needed to walk through or the number of times they stopped walking were assessed from the video footage and analysed with respect to the target variable “udder depth” that was calculated from the recorded 3D data using an automated procedure. Ten repeated passages were recorded of each cow. During the repetitions, the cows adjusted individually (p < 0.001) to the recording situations. The averaged total time to complete a passage (p = 0.05) and the averaged number of stops (p = 0.07) depended on the lactation numbers of the cows. The measurement precision of target variable “udder depth” was affected by the time the cows avoided the recording (p = 0.06) and by the time it took them to walk through the scanning passage (p = 0.03). Effects of animal behaviour during the collection of sensor data can alter the results and should, thus, be considered in the development of sensor based devices.展开更多
In wireless sensor networks, secure data aggregation protocols target the two major objectives, namely, security and en route aggregation. Although en route aggregation of reverse multi-cast traffic improves energy ef...In wireless sensor networks, secure data aggregation protocols target the two major objectives, namely, security and en route aggregation. Although en route aggregation of reverse multi-cast traffic improves energy efficiency, it becomes a hindrance to end-to-end security. Concealed data aggregation protocols aim to preserve the end-to-end privacy of sensor readings while performing en route aggregation. However, the use of inherently malleable privacy homomorphism makes these protocols vulnerable to active attackers. In this paper, we propose an integrity and privacy preserving end-to-end secure data aggregation protocol. We use symmetric key-based homomorphic primitives to provide end-to-end privacy and end-to-end integrity of reverse multicast traffic. As sensor network has a non-replenishable energy supply, the use of symmetric key based homomorphic primitives improves the energy efficiency and increase the sensor network’s lifetime. We comparatively evaluate the performance of the proposed protocol to show its efficacy and efficiency in resource-constrained environments.展开更多
基金supported by the Start-up Fund from Hainan University(No.KYQD(ZR)-20077)。
文摘Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R435),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artificial intelligence(AI)have enabled the development of systems capable of mental health monitoring using multimodal data.However,existing models often struggle with contextual adaptation and real-time decision-making in dynamic settings.This paper addresses these challenges by proposing TRANS-HEALTH,a hybrid framework that integrates transformer-based inference with Belief-Desire-Intention(BDI)reasoning for real-time psychological distress detection.The framework utilizes a multimodal dataset containing EEG,GSR,heart rate,and activity data to predict distress while adapting to individual contexts.The methodology combines deep learning for robust pattern recognition and symbolic BDI reasoning to enable adaptive decision-making.The novelty of the approach lies in its seamless integration of transformermodelswith BDI reasoning,providing both high accuracy and contextual relevance in real time.Performance metrics such as accuracy,precision,recall,and F1-score are employed to evaluate the system’s performance.The results show that TRANS-HEALTH outperforms existing models,achieving 96.1% accuracy with 4.78 ms latency and significantly reducing false alerts,with an enhanced ability to engage users,making it suitable for deployment in wearable and remote healthcare environments.
基金Supported by the National Pre-research Foundation Project of China (513150402)
文摘In hybrid wireless sensor networks, sensor mobility causes the query areas to change dynamically. Aiming at the problem of inefficiency in processing the data aggregation queries in dynamic query areas, this paper proposes a processing approach for event-based location aware queries (ELAQ), which includes query dissemination algorithm, maximum distance projection proxy selection algorithm, in-network query propagation, and aggregation algorithm. ELAQs are triggered by the events and the query results are dependent on mobile sensors' location, which are the characteristics of ELAQ model. The results show that compared with the TinyDB query processing approach, ELAQ processing approach increases the accuracy of the query result and decreases the query response time.
文摘As one of the commonly used queries in modern databases, skyline query has received extensive attention from database research community. The uncertainty of the data in wireless sensor networks makes the corresponding skyline uncertain and not unique. This paper investigates the Pr-Skyline problem, i.e., how to compute the skyline with the highest existence probability in a computational and energy-efficient way. We formulate the problem and prove that it is NP-Complete and cannot be approximated in a given expression. However, the proposed algorithm SKY-SEARCH with pruning techniques can guarantee the computational efficiency given relatively large input size, while the filter-based distributed optimization strategy significantly reduces the transmission cost and the required storage space of the sensor nodes. Extensive experiments verify the efficiency and scalability of SKY-SEARCH and the distributed optimizing strategy.
文摘With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques.
文摘In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
文摘Nowadays,healthcare applications necessitate maximum volume of medical data to be fed to help the physicians,academicians,pathologists,doctors and other healthcare professionals.Advancements in the domain of Wireless Sensor Networks(WSN)andMultimediaWireless Sensor Networks(MWSN)are tremendous.M-WMSN is an advanced form of conventional Wireless Sensor Networks(WSN)to networks that use multimedia devices.When compared with traditional WSN,the quantity of data transmission in M-WMSN is significantly high due to the presence of multimedia content.Hence,clustering techniques are deployed to achieve low amount of energy utilization.The current research work aims at introducing a new Density Based Clustering(DBC)technique to achieve energy efficiency inWMSN.The DBC technique is mainly employed for data collection in healthcare environment which primarily depends on three input parameters namely remaining energy level,distance,and node centrality.In addition,two static data collector points called Super Cluster Head(SCH)are placed,which collects the data from normal CHs and forwards it to the Base Station(BS)directly.SCH supports multi-hop data transmission that assists in effectively balancing the available energy.Adetailed simulation analysiswas conducted to showcase the superior performance of DBC technique and the results were examined under diverse aspects.The simulation outcomes concluded that the proposed DBC technique improved the network lifetime to a maximum of 16,500 rounds,which is significantly higher compared to existing methods.
基金This study was supported by National Key Research and Development Project(Project No.2017YFD0301506)National Social Science Foundation(Project No.71774052)+1 种基金Hunan Education Department Scientific Research Project(Project No.17K04417A092).
文摘Data fusion can effectively process multi-sensor information to obtain more accurate and reliable results than a single sensor.The data of water quality in the environment comes from different sensors,thus the data must be fused.In our research,self-adaptive weighted data fusion method is used to respectively integrate the data from the PH value,temperature,oxygen dissolved and NH3 concentration of water quality environment.Based on the fusion,the Grubbs method is used to detect the abnormal data so as to provide data support for estimation,prediction and early warning of the water quality.
文摘Sensor networks provide means to link people with real world by processing data in real time collected from real-world and routing the query results to the right people. Application examples include continuous monitoring of environment, building infrastructures and human health. Many researchers view the sensor networks as databases, and the monitoring tasks are performed as subscriptions, queries, and alert. However, this point is not precise. First, databases can only deal with well-formed data types, with well-defined schema for their interpretation, while the raw data collected by the sensor networks, in most cases, do not fit to this requirement. Second, sensor networks have to deal with very dynamic targets, environment and resources, while databases are more static. In order to fill this gap between sensor networks and databases, we propose a novel approach, referred to as 'spatiotemporal data stream segmentation', or 'stream segmentation' for short, to address the dynamic nature and deal with 'raw' data of sensor networks. Stream segmentation is defined using Bayesian Networks in the context of sensor networks, and two application examples are given to demonstrate the usefulness of the approach.
基金supported by the National Natural Science Foundation of China (under grants 41874048,41790464,41790462).
文摘A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.
基金Project(07JJ1010) supported by Hunan Provincial Natural Science Foundation of ChinaProjects(2006AA01Z202, 2006AA01Z199) supported by the National High-Tech Research and Development Program of China+2 种基金Project(7002102) supported by the City University of Hong Kong, Strategic Research Grant (SRG)Project(IRT-0661) supported by the Program for Changjiang Scholars and Innovative Research Team in UniversityProject(NCET-06-0686) supported by the Program for New Century Excellent Talents in University
文摘HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks.
文摘Wireless Sensor Networks (WSNs) typically use in-network processing to reduce the communication overhead. Due to the fusion of data items sourced at different nodes into a single one during in-network processing, the sanctity of the aggregated data needs to be ensured. Especially, the data integrity of the aggregated result is critical as any malicious update to it can jeopardize not one, but many sensor readings. In this paper, we analyse three different approaches to providing integrity support for SDA in WSNs. The first one is traditional MAC, in which each leaf node and intermediate node share a key with parent (symmetric key). The second is aggregate MAC (AMAC), in which a base station shares a unique key with all the other sensor nodes. The third is homomorphic MAC (Homo MAC) that is purely symmetric key-based approach. These approaches exhibit diverse trade-off in resource consumption and security assumptions. Adding together to that, we also propose a probabilistic and improved variant of homomorphic MAC that improves the security strength for secure data aggregation in WSNs. We carry out simulations in TinyOS environment to experimentally evaluate the impact of each of these on the resource consumption in WSNs.
基金the National Natural Science Foundation of China(No.51205018)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-14-121A2)the Research Project of State Key Laboratory of Mechanical System and Vibration(No.MSV-2014-09)
文摘Wind energy is one of the widely applied renewable energies in the world. Wind turbine as the main wind energy converter at present has very complex technical system containing a huge number of components,actuators and sensors. However, despite of the hardware redundancy, sensor faults have often affected the wind turbine normal operation and thus caused energy generation loss. In this paper, aiming at the wind turbine hydraulic pitch system, data-driven design of process monitoring(PM) and diagnosis has been realized in the wind turbine benchmark. Fault tolerant control(FTC) strategies focused on sensor faults have also been presented here, where with the implementation of soft sensor the sensor fault can be handled and the performance of the system is improved. The performance of this method is demonstrated with the wind turbine benchmark provided by Math Works.
文摘Precision Livestock Farming studies are based on data that was measured from animals via technical devices. In the means of automation, it is usually not accounted for the animals’ reaction towards the devices or individual animal behaviour during the gathering of sensor data. In this study, 14 Holstein-Friesian cows were recorded with a 2D video camera while walking through a scanning passage comprising six Microsoft Kinect 3D cameras. Elementary behavioural traits like how long the cows avoided the passage, the time they needed to walk through or the number of times they stopped walking were assessed from the video footage and analysed with respect to the target variable “udder depth” that was calculated from the recorded 3D data using an automated procedure. Ten repeated passages were recorded of each cow. During the repetitions, the cows adjusted individually (p < 0.001) to the recording situations. The averaged total time to complete a passage (p = 0.05) and the averaged number of stops (p = 0.07) depended on the lactation numbers of the cows. The measurement precision of target variable “udder depth” was affected by the time the cows avoided the recording (p = 0.06) and by the time it took them to walk through the scanning passage (p = 0.03). Effects of animal behaviour during the collection of sensor data can alter the results and should, thus, be considered in the development of sensor based devices.
文摘In wireless sensor networks, secure data aggregation protocols target the two major objectives, namely, security and en route aggregation. Although en route aggregation of reverse multi-cast traffic improves energy efficiency, it becomes a hindrance to end-to-end security. Concealed data aggregation protocols aim to preserve the end-to-end privacy of sensor readings while performing en route aggregation. However, the use of inherently malleable privacy homomorphism makes these protocols vulnerable to active attackers. In this paper, we propose an integrity and privacy preserving end-to-end secure data aggregation protocol. We use symmetric key-based homomorphic primitives to provide end-to-end privacy and end-to-end integrity of reverse multicast traffic. As sensor network has a non-replenishable energy supply, the use of symmetric key based homomorphic primitives improves the energy efficiency and increase the sensor network’s lifetime. We comparatively evaluate the performance of the proposed protocol to show its efficacy and efficiency in resource-constrained environments.