Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effec...Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effective Hamiltonian method in conjuction with the phase-field model, we have successfully reproduced the thermal hysteresis observed in ferroelectric materials during phase transitions. The computational results regarding the electrocaloric effect from these two different computational scales closely align with experimental measurements. Furthermore, we analyze how the first-order ferroelectric phase transition gradually diminishes with an increasing applied electric field, exhibiting characteristics of second-order-like phase transition. By employing the characteristic parameters of thermal hysteresis, we have established a pathway for calculations across different computational scales, thereby providing theoretical support for further investigations into the properties of ferroelectric materials through concurrent multiscale simulations.展开更多
A uniform longitudinal field applied to the transverse Ising model(TIM)distinguishes the antiferromagnetic Ising interaction from its ferromagnetic counterpart.While the ground state of the latter shows no quantum pha...A uniform longitudinal field applied to the transverse Ising model(TIM)distinguishes the antiferromagnetic Ising interaction from its ferromagnetic counterpart.While the ground state of the latter shows no quantum phase transition(QPT),the ground state of the former exhibits rich phases:paramagnetic,antiferromagnetic,and possibly disordered phases.Although the first two are clearly identified,the existence of the disordered phase remains controversial.Here,we use the pattern picture to explore the competition among the antiferromagnetic Ising interaction J,the transverse field hx and the longitudinal field h_(z),and uncover which patterns are responsible for these three competing energy scales,thereby determining the possible phases and the QPTs among them.The system size ranges from L=8 to 128 and the transverse field hx is fixed at 1.Under these parameters,our results show the existence of the disordered phase.For a small h_(z),the system transitions from a disordered phase to an antiferromagnetic phase as J increases.For a large h_(z),the system undergoes two phase transitions:from paramagnetic to disordered,and then to antiferromagnetic phase.These results not only unveil the rich physics of this paradigmatic model but also stimulate quantum simulation by using currently available experimental platforms.展开更多
We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the tran...We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the transversefield Ising model(TFIM)as a case study,we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates.Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition,as reflected in the behavior of specific componentsξ_(i)^((k))within the eigen microstates.This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging.展开更多
Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorde...Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorder complicates the development of accurate theoretical models.In this study,CoS2 is used as a model system to establish a framework for rationally modeling reconstructed OER catalysts based on density functional theory(DFT).In the reconstruction process,sulfur atoms are likely to be substituted by oxygen atoms,leading to the formation of the CoOOH phase.Based on the difference in reconstruction degree,we constructed three types of models:doping,heterostructure,and fully reconstructed,representing the reconstruction degree from minimal to full phase transition,respectively.Fully reconstructed models,which account for strain and vacancy effects,effectively simulate the unique coordination environments of reconstructed catalysts.Model e-CoOOH achieves a theoretical overpotential of 0.38 V,outperforming pristine CoOOH(0.56 V),demonstrating that the unique structural features resulting from reconstruction improve OER performance.The doping model and the heterostructure model are helpful to explain the electronic structure and performance transformation of the reconstruction process.This work provides a rational theoretical modeling approach,which is conducive to improving the reliability of the theoretical OER performance of the reconstructed catalyst.展开更多
Recent discovery of high transition temperature superconductivity in La_(3)Ni_(2)O_(7) has sparked renewed theoretical and experimental interests in unconventional superconductivity. It is crucial to understand the in...Recent discovery of high transition temperature superconductivity in La_(3)Ni_(2)O_(7) has sparked renewed theoretical and experimental interests in unconventional superconductivity. It is crucial to understand the influence of various factors on its superconductivity. By refining the determinant quantum Monte Carlo algorithm, we characterize the parameter dependence of the superconducting transition temperature within a bilayer Hubbard model, which is sign-problem-free at arbitrary filling. A striking feature of this model is its similarity to the bilayer nickelate-based superconductor La_(3)Ni_(2)O_(7), where superconductivity emerges from the bilayer NiO_(2) planes.We find that interlayer spin-exchange J is critical to interlayer pairing, and that on-site interaction U contributes negatively to superconductivity at low doping levels but positively at high doping levels. Our findings can provide a reference for the next step in theoretical research on nickelate-based superconductors.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
This paper describes a simplified transition model based on the recently developed correlation-based γ - Reot transition model. The transport equation of transition momentum thick- ness Reynolds number is eliminated ...This paper describes a simplified transition model based on the recently developed correlation-based γ - Reot transition model. The transport equation of transition momentum thick- ness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house com- putational fluid dynamics (CFD) code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original 3' - Reot model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation- induced transition flows, are required for the improvement of the new model.展开更多
A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis com...A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.展开更多
This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transp...This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...展开更多
To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hy...To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hypersonic transition research vehicle(HyTRV).The configuration of HyTRV is fully analytical,and details of the design process are discussed in this study.The transition characteristics for HyTRV are investigated using three combined methods,i.e.,theoretical analyses,numerical simulations,and wind tunnel experiments.Results show that the fully analytic parameterization design of HyTRV can satisfy the model simplification requirements from both numerical simulations and wind tunnel experiments.Meanwhile,the flow field of HyTRV reveals typical transition mechanisms in six relatively separated regions,including the streamwise vortex instability,crossflow instability,secondary instability,and attachment-line instability.Therefore,the proposed HyTRV model is valuable for fundamental researches in hypersonic boundary layer transition.展开更多
Background:The Transitional Care Model(TCM)for nursing care has yet to be implemented in China despite its success in Western countries.However,rapid social changes have demanded an upgrade in the quality of nursing c...Background:The Transitional Care Model(TCM)for nursing care has yet to be implemented in China despite its success in Western countries.However,rapid social changes have demanded an upgrade in the quality of nursing care;in 2010,the Chinese government has acknowledged the need to implement the TCM in China.Objective:This study has the following objectives:(1)perform a thorough review of the literature regarding the development and implementation of the TCM in China's Mainland within the past 5 years;(2)provide a comprehensive discussion of the current status,problems,and strategies related to the implementation of the TCM in China's Mainland;and(3)suggest strategies pertaining to the future of the TCM in China.Design:The current pertinent literature is systematically reviewed.Data sources:Systematic and manual searches in computerized databases for relevant studies regarding the TCM led to the inclusion of 26 papers in this review.Review methods:Abstracts that satisfied the inclusion criteria were reviewed independently by the two authors of this manuscript,and discrepancies were resolved through discussion.The same reviewers independently assessed the paper in its entirety for selected abstracts.Results:The present English literature reviewrevealed a paucity of updated information about the development and implementation of the TCM in China's Mainland.Nevertheless,the dramatic growth of the TCM in the past 5 years has had a vital impact within the society and in nursing development.This review also revealed numerous issues regarding the focus of the TCM.Overall implications for practiceandrecommendations for future researchare discussed.Conclusion:Despite the potential of this nursing model to have a successful and beneficial impact in China's Mainland,it remains an under-researched topic.Further research on education and training as well as premium policies for nurses under the TCM are needed.展开更多
The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted...The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area.展开更多
To investigate the enthalpy relaxation behavior of maltitol glass system,differential scanning calorimetry(DSC) was used to obtain the specific heat capacity[C p(T)] near the glass transition temperature(T g) at...To investigate the enthalpy relaxation behavior of maltitol glass system,differential scanning calorimetry(DSC) was used to obtain the specific heat capacity[C p(T)] near the glass transition temperature(T g) at different cooling rates ranged between 1 and 20 K/min.Three phenomenological models of enthalpy relaxation,ToolNarayanaswamy-Moynihan(TNM) model,Adam-Gibbs-Vogel(AGV) model and Gómez Ribelles(GR) model,were used to simulate the experimental data.The models' parameters were obtained via a curve-fitting method.The results indicate that TNM and AGV models gave the almost identical prediction powers and can reproduce the curves of experimental C p(T) very well.However,the prediction power of GR model evolved from configurational entropy approach is not so good as those of TNM and AGV models.In particular,the metastable limit state parameter(δ) introduced by Gómez Ribelles has insignificant effect on the enthalpy relaxation of the small molecular hydrogen-bonding glass system.展开更多
Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation result...Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observation. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.展开更多
The purpose of this work is to improve the k-ω-γtransition model for separationinduced transition prediction.The fundamental cause of the excessively small separation bubble predicted by k-ω-γmodel is scrutinized ...The purpose of this work is to improve the k-ω-γtransition model for separationinduced transition prediction.The fundamental cause of the excessively small separation bubble predicted by k-ω-γmodel is scrutinized from the perspective of model construction.On the basis,three rectifications are conducted to improve the k-ω-γmodel for separation-induced transition.Firstly,a damping function is established via comparing the molecular diffusion timescale with the rapid pressure-strain timescale.The damping function is applied to prevent the effective length scale from incorrect distribution near the leading edge of the separation bubble.Secondly,the pressure gradient parameterλζ,is proposed as an indicator for local susceptibility to the separation instability.Additionally,λζ,-based separation intermittencyγsep is constructed to accelerate the substantial growth of turbulent kinetic energy after flow separation.The improved model appropriate for both low-and high-speed flow has been calibrated against a variety of diverse and challenging experiments,including the subsonic T3L plate,Aerospatial A airfoil,transonic NLR-7301 airfoil and deformed hypersonic inflatable aerodynamic decelerator aeroshell.The improved model is strictly based on local variables and Galilean invariance.Besides,the proposed improvement for k-ω-γmodel can be fairly convenient to incorporate into other existing intermittency-based transition models.展开更多
The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a ...The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.展开更多
With unified colored noise approximation, the logistic growth model is used to analyze cancer cell population when colored noise is included. It is found that both the coupling between noise terms and the noise color...With unified colored noise approximation, the logistic growth model is used to analyze cancer cell population when colored noise is included. It is found that both the coupling between noise terms and the noise color can induce continuous first-order-like and re-entrance-like phase transitions in the system. The coupling and the noise color can also increase tumor cell growth for small number of cell mass and repress tumor cell growth for large number of cell mass. It is shown that the approximate analytic expressions are consistent with the numerical simulations.展开更多
Reliable process monitoring is important for ensuring process safety and product quality.A production process is generally characterized bymultiple operation modes,and monitoring thesemultimodal processes is challengi...Reliable process monitoring is important for ensuring process safety and product quality.A production process is generally characterized bymultiple operation modes,and monitoring thesemultimodal processes is challenging.Most multimodal monitoring methods rely on the assumption that the modes are independent of each other,which may not be appropriate for practical application.This study proposes a transition-constrained Gaussian mixture model method for efficient multimodal process monitoring.This technique can reduce falsely and frequently occurring mode transitions by considering the time series information in the mode identification of historical and online data.This process enables the identified modes to reflect the stability of actual working conditions,improve mode identification accuracy,and enhance monitoring reliability in cases of mode overlap.Case studies on a numerical simulation example and simulation of the penicillin fermentation process are provided to verify the effectiveness of the proposed approach inmultimodal process monitoring with mode overlap.展开更多
In the transition mode of quad tilt wing-unmanned aerial vehicle(QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow...In the transition mode of quad tilt wing-unmanned aerial vehicle(QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow and other disturbances,the system is prone to side bias,frying,stall and other kinetic stability problems,hence the system stability analysis has become an urgent problem to be solved.To solve the stability problem,we need the quantitative criteria of system stability and effective tool of stability analysis,and can improve the stability of the motion control by optimizing the structural parameters of the aircraft.Therefore,based on the design of the mechanical structure,the quantitative relationship between the structure parameters of the aerial vehicle and kinetic stability of the system transition mode is established by the Lyapunov exponent method.In this paper,the dynamic modeling of the position and attitude angle is carried out and the stability of the system is analyzed by Lyapunov exponent,the results show that changing the mechanical structure of the system can improve the flight stability for the system transition mode and lay a theoretical foundation for the system stability analysis.Compared with the Lyapunov direct method,this method can be construct easily,has a simple calculation process and so on.We improve the flight stability by optimizing the structure and the experiment confirms that expanding area can enhance flight stability within limits.展开更多
We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys....We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys.(N.Y.) 16 407].We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations.We also investigate the scaling behavior of the system close to the quantum critical point,which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size.Also,the first derivative of concurrence between two blocks diverges at the quantum critical point,which is directly associated with the divergence of the correlation length.展开更多
基金Project supported financially by the National Natural Science Foundation of China (Grant No. 52372100)the National Key Research and Development Program of China (Grant No. 2019YFA0307900)。
文摘Based on the principles of thermodynamics, we elucidate the fundamental reasons behind the hysteresis of spontaneous polarization in ferroelectric materials during heating and cooling processes. By utilizing the effective Hamiltonian method in conjuction with the phase-field model, we have successfully reproduced the thermal hysteresis observed in ferroelectric materials during phase transitions. The computational results regarding the electrocaloric effect from these two different computational scales closely align with experimental measurements. Furthermore, we analyze how the first-order ferroelectric phase transition gradually diminishes with an increasing applied electric field, exhibiting characteristics of second-order-like phase transition. By employing the characteristic parameters of thermal hysteresis, we have established a pathway for calculations across different computational scales, thereby providing theoretical support for further investigations into the properties of ferroelectric materials through concurrent multiscale simulations.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402704)the National Natural Science Foundation of China(Grant No.12247101)。
文摘A uniform longitudinal field applied to the transverse Ising model(TIM)distinguishes the antiferromagnetic Ising interaction from its ferromagnetic counterpart.While the ground state of the latter shows no quantum phase transition(QPT),the ground state of the former exhibits rich phases:paramagnetic,antiferromagnetic,and possibly disordered phases.Although the first two are clearly identified,the existence of the disordered phase remains controversial.Here,we use the pattern picture to explore the competition among the antiferromagnetic Ising interaction J,the transverse field hx and the longitudinal field h_(z),and uncover which patterns are responsible for these three competing energy scales,thereby determining the possible phases and the QPTs among them.The system size ranges from L=8 to 128 and the transverse field hx is fixed at 1.Under these parameters,our results show the existence of the disordered phase.For a small h_(z),the system transitions from a disordered phase to an antiferromagnetic phase as J increases.For a large h_(z),the system undergoes two phase transitions:from paramagnetic to disordered,and then to antiferromagnetic phase.These results not only unveil the rich physics of this paradigmatic model but also stimulate quantum simulation by using currently available experimental platforms.
基金supported by the National Natural Science Foundation of China(Grant Nos.12475033,12135003,12174194,and 12405032)the National Key Research and Development Program of China(Grant No.2023YFE0109000)+1 种基金supported by the Fundamental Research Funds for the Central Universitiessupport from the China Postdoctoral Science Foundation(Grant No.2023M730299).
文摘We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the transversefield Ising model(TFIM)as a case study,we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates.Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition,as reflected in the behavior of specific componentsξ_(i)^((k))within the eigen microstates.This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging.
基金supported by the National Key Research and Development program(2022YFA1504000)the National Natural Science Foundation of China(22302101)+4 种基金the Fundamental Research Funds for the Central Universities(63185015)Shenzhen Science and Technology Program(JCYJ20210324121002007,JCYJ20230807151503007)Yunnan Provincial Science and Technology Project at Southwest United Graduate School(202402AO370001)China Postdoctoral Science Foundation(2022M721699)Guangdong Basic and Applied Basic Research Foundation(2024A1515010347).
文摘Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorder complicates the development of accurate theoretical models.In this study,CoS2 is used as a model system to establish a framework for rationally modeling reconstructed OER catalysts based on density functional theory(DFT).In the reconstruction process,sulfur atoms are likely to be substituted by oxygen atoms,leading to the formation of the CoOOH phase.Based on the difference in reconstruction degree,we constructed three types of models:doping,heterostructure,and fully reconstructed,representing the reconstruction degree from minimal to full phase transition,respectively.Fully reconstructed models,which account for strain and vacancy effects,effectively simulate the unique coordination environments of reconstructed catalysts.Model e-CoOOH achieves a theoretical overpotential of 0.38 V,outperforming pristine CoOOH(0.56 V),demonstrating that the unique structural features resulting from reconstruction improve OER performance.The doping model and the heterostructure model are helpful to explain the electronic structure and performance transformation of the reconstruction process.This work provides a rational theoretical modeling approach,which is conducive to improving the reliability of the theoretical OER performance of the reconstructed catalyst.
基金supported by the National Natural Science Foundation of China (Grant Nos.12234016,12174317 for C.Wu,and 12474218 for R.Ma,Z.Fan,and T.Ma)Beijing Natural Science Foundation (Grant No.1242022 for R.Ma,Z.Fan,and T.Ma)the New Cornerstone Science Foundation。
文摘Recent discovery of high transition temperature superconductivity in La_(3)Ni_(2)O_(7) has sparked renewed theoretical and experimental interests in unconventional superconductivity. It is crucial to understand the influence of various factors on its superconductivity. By refining the determinant quantum Monte Carlo algorithm, we characterize the parameter dependence of the superconducting transition temperature within a bilayer Hubbard model, which is sign-problem-free at arbitrary filling. A striking feature of this model is its similarity to the bilayer nickelate-based superconductor La_(3)Ni_(2)O_(7), where superconductivity emerges from the bilayer NiO_(2) planes.We find that interlayer spin-exchange J is critical to interlayer pairing, and that on-site interaction U contributes negatively to superconductivity at low doping levels but positively at high doping levels. Our findings can provide a reference for the next step in theoretical research on nickelate-based superconductors.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.
基金supported by the State Key Development Program for Basic Research of China(No.2014CB340201)
文摘This paper describes a simplified transition model based on the recently developed correlation-based γ - Reot transition model. The transport equation of transition momentum thick- ness Reynolds number is eliminated for simplicity, and new transition length function and critical Reynolds number correlation are proposed. The new model is implemented into an in-house com- putational fluid dynamics (CFD) code and validated for low and high-speed flow cases, including the zero pressure flat plate, airfoils, hypersonic flat plate and double wedge. Comparisons between the simulation results and experimental data show that the boundary-layer transition phenomena can be reasonably illustrated by the new model, which gives rise to significant improvements over the fully laminar and fully turbulent results. Moreover, the new model has comparable features of accuracy and applicability when compared with the original 3' - Reot model. In the meantime, the newly proposed model takes only one transport equation of intermittency factor and requires fewer correlations, which simplifies the original model greatly. Further studies, especially on separation- induced transition flows, are required for the improvement of the new model.
文摘A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.
文摘This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...
基金This work was supported by the National Natural Science Foundation of China(Grant 11702315,92052301)the National Key Research and Development Program of China(Grant 2016YFA0401200).
文摘To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hypersonic transition research vehicle(HyTRV).The configuration of HyTRV is fully analytical,and details of the design process are discussed in this study.The transition characteristics for HyTRV are investigated using three combined methods,i.e.,theoretical analyses,numerical simulations,and wind tunnel experiments.Results show that the fully analytic parameterization design of HyTRV can satisfy the model simplification requirements from both numerical simulations and wind tunnel experiments.Meanwhile,the flow field of HyTRV reveals typical transition mechanisms in six relatively separated regions,including the streamwise vortex instability,crossflow instability,secondary instability,and attachment-line instability.Therefore,the proposed HyTRV model is valuable for fundamental researches in hypersonic boundary layer transition.
文摘Background:The Transitional Care Model(TCM)for nursing care has yet to be implemented in China despite its success in Western countries.However,rapid social changes have demanded an upgrade in the quality of nursing care;in 2010,the Chinese government has acknowledged the need to implement the TCM in China.Objective:This study has the following objectives:(1)perform a thorough review of the literature regarding the development and implementation of the TCM in China's Mainland within the past 5 years;(2)provide a comprehensive discussion of the current status,problems,and strategies related to the implementation of the TCM in China's Mainland;and(3)suggest strategies pertaining to the future of the TCM in China.Design:The current pertinent literature is systematically reviewed.Data sources:Systematic and manual searches in computerized databases for relevant studies regarding the TCM led to the inclusion of 26 papers in this review.Review methods:Abstracts that satisfied the inclusion criteria were reviewed independently by the two authors of this manuscript,and discrepancies were resolved through discussion.The same reviewers independently assessed the paper in its entirety for selected abstracts.Results:The present English literature reviewrevealed a paucity of updated information about the development and implementation of the TCM in China's Mainland.Nevertheless,the dramatic growth of the TCM in the past 5 years has had a vital impact within the society and in nursing development.This review also revealed numerous issues regarding the focus of the TCM.Overall implications for practiceandrecommendations for future researchare discussed.Conclusion:Despite the potential of this nursing model to have a successful and beneficial impact in China's Mainland,it remains an under-researched topic.Further research on education and training as well as premium policies for nurses under the TCM are needed.
文摘The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area.
基金Supported by the National Natural Science Foundation of China(No.20803016)the Natural Science Foundation of Anhui Province,China(No.070414163)
文摘To investigate the enthalpy relaxation behavior of maltitol glass system,differential scanning calorimetry(DSC) was used to obtain the specific heat capacity[C p(T)] near the glass transition temperature(T g) at different cooling rates ranged between 1 and 20 K/min.Three phenomenological models of enthalpy relaxation,ToolNarayanaswamy-Moynihan(TNM) model,Adam-Gibbs-Vogel(AGV) model and Gómez Ribelles(GR) model,were used to simulate the experimental data.The models' parameters were obtained via a curve-fitting method.The results indicate that TNM and AGV models gave the almost identical prediction powers and can reproduce the curves of experimental C p(T) very well.However,the prediction power of GR model evolved from configurational entropy approach is not so good as those of TNM and AGV models.In particular,the metastable limit state parameter(δ) introduced by Gómez Ribelles has insignificant effect on the enthalpy relaxation of the small molecular hydrogen-bonding glass system.
基金National Natural Science Foundation of China (50434030)
文摘Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observation. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.
基金supported by the National Natural Science Foundation of China(Nos.11902367 and 12002355)the State Key Laboratory of Aerodynamics,China(No.SKLA20200202)+1 种基金the National Natural Science Foundation of Hunan Province,China(No.S2021JJQNJJ2716)upported in part by the High Performance Computing Center of Central South University。
文摘The purpose of this work is to improve the k-ω-γtransition model for separationinduced transition prediction.The fundamental cause of the excessively small separation bubble predicted by k-ω-γmodel is scrutinized from the perspective of model construction.On the basis,three rectifications are conducted to improve the k-ω-γmodel for separation-induced transition.Firstly,a damping function is established via comparing the molecular diffusion timescale with the rapid pressure-strain timescale.The damping function is applied to prevent the effective length scale from incorrect distribution near the leading edge of the separation bubble.Secondly,the pressure gradient parameterλζ,is proposed as an indicator for local susceptibility to the separation instability.Additionally,λζ,-based separation intermittencyγsep is constructed to accelerate the substantial growth of turbulent kinetic energy after flow separation.The improved model appropriate for both low-and high-speed flow has been calibrated against a variety of diverse and challenging experiments,including the subsonic T3L plate,Aerospatial A airfoil,transonic NLR-7301 airfoil and deformed hypersonic inflatable aerodynamic decelerator aeroshell.The improved model is strictly based on local variables and Galilean invariance.Besides,the proposed improvement for k-ω-γmodel can be fairly convenient to incorporate into other existing intermittency-based transition models.
基金National Natural Science Foundation of China(Grant No.91130013)Innovation Foundation of BUAA for PhD Graduates(YWF-12-RBYJ-010)Specialized Research Fund for the Doctoral Program of Higher Education(20101102110011)for funding this work
文摘The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2001138
文摘With unified colored noise approximation, the logistic growth model is used to analyze cancer cell population when colored noise is included. It is found that both the coupling between noise terms and the noise color can induce continuous first-order-like and re-entrance-like phase transitions in the system. The coupling and the noise color can also increase tumor cell growth for small number of cell mass and repress tumor cell growth for large number of cell mass. It is shown that the approximate analytic expressions are consistent with the numerical simulations.
基金supported in part by National Natural Science Foundation of China under Grants 61973119 and 61603138in part by Shanghai Rising-Star Program under Grant 20QA1402600+1 种基金in part by the Open Funding from Shandong Key Laboratory of Big-data Driven Safety Control Technology for Complex Systems under Grant SKDN202001in part by the Programme of Introducing Talents of Discipline to Universities(the 111 Project)under Grant B17017.
文摘Reliable process monitoring is important for ensuring process safety and product quality.A production process is generally characterized bymultiple operation modes,and monitoring thesemultimodal processes is challenging.Most multimodal monitoring methods rely on the assumption that the modes are independent of each other,which may not be appropriate for practical application.This study proposes a transition-constrained Gaussian mixture model method for efficient multimodal process monitoring.This technique can reduce falsely and frequently occurring mode transitions by considering the time series information in the mode identification of historical and online data.This process enables the identified modes to reflect the stability of actual working conditions,improve mode identification accuracy,and enhance monitoring reliability in cases of mode overlap.Case studies on a numerical simulation example and simulation of the penicillin fermentation process are provided to verify the effectiveness of the proposed approach inmultimodal process monitoring with mode overlap.
基金This research is supported financially by Natural Science Foundation of China(Grant No.51575283,No.51405243).
文摘In the transition mode of quad tilt wing-unmanned aerial vehicle(QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow and other disturbances,the system is prone to side bias,frying,stall and other kinetic stability problems,hence the system stability analysis has become an urgent problem to be solved.To solve the stability problem,we need the quantitative criteria of system stability and effective tool of stability analysis,and can improve the stability of the motion control by optimizing the structural parameters of the aircraft.Therefore,based on the design of the mechanical structure,the quantitative relationship between the structure parameters of the aerial vehicle and kinetic stability of the system transition mode is established by the Lyapunov exponent method.In this paper,the dynamic modeling of the position and attitude angle is carried out and the stability of the system is analyzed by Lyapunov exponent,the results show that changing the mechanical structure of the system can improve the flight stability for the system transition mode and lay a theoretical foundation for the system stability analysis.Compared with the Lyapunov direct method,this method can be construct easily,has a simple calculation process and so on.We improve the flight stability by optimizing the structure and the experiment confirms that expanding area can enhance flight stability within limits.
文摘We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys.(N.Y.) 16 407].We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations.We also investigate the scaling behavior of the system close to the quantum critical point,which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size.Also,the first derivative of concurrence between two blocks diverges at the quantum critical point,which is directly associated with the divergence of the correlation length.