随着科学技术的不断进步、替代毒理学的快速发展以及动物实验禁令在部分国家和地区的推广,传统风险评估的局限性日益凸显,下一代风险评估(next generation risk assessment,NGRA)应运而生。NGRA是一种替代动物实验的新型风险评估方法,...随着科学技术的不断进步、替代毒理学的快速发展以及动物实验禁令在部分国家和地区的推广,传统风险评估的局限性日益凸显,下一代风险评估(next generation risk assessment,NGRA)应运而生。NGRA是一种替代动物实验的新型风险评估方法,它依赖于通过体外测试、体外-体内外推(in vitro to in vivo extrapolation,IVIVE)、计算毒理学、交叉参照等新路线方法(new approach methodologies,NAMs)生成的数据,这些方法使用基于人类的模型,准确地反映了人类生物学,增加了风险评估的准确性以及高效性。本文系统整理了NGRA的研究现状和进展,简要介绍了NGRA的框架,主要围绕NGRA采用的NAMs及面临的挑战进行了重点分析,同时分享多种暴露场景下的应用案例,并对NGRA未来研究方向进行展望,以期为我国化学物质环境管理提供更好的方法学支撑。展开更多
Bioelution, the measuring of in vitro metal ion release from metals or metal compounds in simulated body fluids, can be used as a tool to measure bioaccessibility of metals and metal compounds, and as such provide an ...Bioelution, the measuring of in vitro metal ion release from metals or metal compounds in simulated body fluids, can be used as a tool to measure bioaccessibility of metals and metal compounds, and as such provide an estimate of their bioavailability. Comparable bioelution results can allow grouping of substances within a “metal” family. By referring to toxicity data on a metal substance (reference substance) within the group, predictions on the hazard of the other substances in the group can be established. This paper discusses how bioelution testing of metals and metal compounds can be used as an alternative to animal testing for obtaining basic information on their potential toxicity, while allowing compliance with strict information requirements. Two human health hazard endpoints are used to illustrate how bioelution can become part of a testing programme and in particular, target the requirement for new studies and minimise the need for animal testing. In these cases, it is shown how bioelution can be used to predict the hazard of several indium compounds as a first screening.展开更多
文摘随着科学技术的不断进步、替代毒理学的快速发展以及动物实验禁令在部分国家和地区的推广,传统风险评估的局限性日益凸显,下一代风险评估(next generation risk assessment,NGRA)应运而生。NGRA是一种替代动物实验的新型风险评估方法,它依赖于通过体外测试、体外-体内外推(in vitro to in vivo extrapolation,IVIVE)、计算毒理学、交叉参照等新路线方法(new approach methodologies,NAMs)生成的数据,这些方法使用基于人类的模型,准确地反映了人类生物学,增加了风险评估的准确性以及高效性。本文系统整理了NGRA的研究现状和进展,简要介绍了NGRA的框架,主要围绕NGRA采用的NAMs及面临的挑战进行了重点分析,同时分享多种暴露场景下的应用案例,并对NGRA未来研究方向进行展望,以期为我国化学物质环境管理提供更好的方法学支撑。
文摘Bioelution, the measuring of in vitro metal ion release from metals or metal compounds in simulated body fluids, can be used as a tool to measure bioaccessibility of metals and metal compounds, and as such provide an estimate of their bioavailability. Comparable bioelution results can allow grouping of substances within a “metal” family. By referring to toxicity data on a metal substance (reference substance) within the group, predictions on the hazard of the other substances in the group can be established. This paper discusses how bioelution testing of metals and metal compounds can be used as an alternative to animal testing for obtaining basic information on their potential toxicity, while allowing compliance with strict information requirements. Two human health hazard endpoints are used to illustrate how bioelution can become part of a testing programme and in particular, target the requirement for new studies and minimise the need for animal testing. In these cases, it is shown how bioelution can be used to predict the hazard of several indium compounds as a first screening.