This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a ro...This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a robust nonlinear controller, is designed to control the pressurizedwater reactor power. The reactor core is simulated based on the point kinetics equations and six delayed neutron groups. Considering neutron absorber poisons and regarding the limitations of the xenon concentration measurement, a sliding mode observer is designed to estimate its value, and finally, a sliding mode control based on the sliding mode observer is presented to control the core power of reactor. The stability analysis is given by means Lyapunov approach; thus, the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications, and moreover,the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed observerbased controller in terms of performance, robustness and stability.展开更多
Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results s...Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration.展开更多
This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000...This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000. The power controller model produces mathematical model description in nonlinear relation form in Simulink of MATLAB which is an important and popular program used at most universities for education. The power controller is described by a block diagram in this paper and some details introduce to clearly understand the work function. The results of action control compared with the PCTRAN programme in modes of automatic and manual control.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
文摘This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a robust nonlinear controller, is designed to control the pressurizedwater reactor power. The reactor core is simulated based on the point kinetics equations and six delayed neutron groups. Considering neutron absorber poisons and regarding the limitations of the xenon concentration measurement, a sliding mode observer is designed to estimate its value, and finally, a sliding mode control based on the sliding mode observer is presented to control the core power of reactor. The stability analysis is given by means Lyapunov approach; thus, the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications, and moreover,the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed observerbased controller in terms of performance, robustness and stability.
文摘Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration.
文摘This paper introduces the simulation, and controls using Simulink of MATLAB for PCTRAN (Personal Computer Transient Analysis) of the power control system (PWR) type pressurized water reactor of PWR WESTINGHOUSE AP1000. The power controller model produces mathematical model description in nonlinear relation form in Simulink of MATLAB which is an important and popular program used at most universities for education. The power controller is described by a block diagram in this paper and some details introduce to clearly understand the work function. The results of action control compared with the PCTRAN programme in modes of automatic and manual control.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.