期刊文献+
共找到1,058篇文章
< 1 2 53 >
每页显示 20 50 100
Reactive oxygen species generation by organic materials for efficient photocatalysis
1
作者 Qing Liu Tangxin Xiao +1 位作者 Zhouyu Wang Leyong Wang 《Chinese Chemical Letters》 2025年第10期1-3,共3页
Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and... Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced. 展开更多
关键词 superoxide anions o hydroxyl radicals superoxide anions reactive oxygen species singlet oxygen reactive oxygen species ros including selective oxidation reactionslight driven PHOTOCATALYSIS
原文传递
Tetramethylpyrazine induces reactive oxygen species-based mitochondria-mediated apoptosis in colon cancer cells
2
作者 Yan-Xu Hou Wei Ren +3 位作者 Qing-Qiang He Li-Yan Huang Tian-Hua Gao Hua Li 《World Journal of Gastrointestinal Oncology》 2025年第4期442-450,共9页
BACKGROUND Colon cancer is one of the most common malignancies worldwide,and chemo-therapy is a widely used strategy in colon cancer clinical therapy.Chemotherapy resistance is the main cause of recurrence and progres... BACKGROUND Colon cancer is one of the most common malignancies worldwide,and chemo-therapy is a widely used strategy in colon cancer clinical therapy.Chemotherapy resistance is the main cause of recurrence and progression in colon cancer.Thus,novel drugs for treatment are urgently needed.Tetramethylpyrazine(TMP),a component of the traditional Chinese medicine Chuanxiong Hort,has been proven to exhibit a beneficial effect in tumors.AIM To investigate the potential anticancer activity of TMP in colon cancer and the underlying mechanisms.METHODS Colon cancer cells were incubated with different concentrations of TMP.Cell viability was evaluated by crystal violet staining assay,and cell apoptosis was assessed by flow cytometry.Apoptosis-associated protein expression was measured using Western blot analysis.Intracellular reactive oxygen species(ROS)levels were assessed by flow cytometry using DCF fluorescence intensity.Xeno-grafts were established by the subcutaneous injection of colon cancer cells into nude mice;tumor growth was monitored and intracellular ROS was detected in tumors by malondialdehyde assay.RESULTS TMP induced apoptosis of colon cancer cells via the activation of the mitochon-drial pathway.TMP increased the generation of intracellular ROS and triggered mitochondria-mediated apoptosis in a caspase-dependent manner.CONCLUSION Our study demonstrates that TMP induces the apoptosis of colon cancer cells and increases the generation of intracellular ROS.TMP triggers mitochondria-mediated apoptosis in a caspase-dependent manner.The accumu-lation of intracellular ROS is involved in TMP-induced apoptosis.Our findings suggest that TMP may be a potential therapeutic drug for the treatment of colon cancer. 展开更多
关键词 TETRAMETHYLPYRAZINE Colon cancer reactive oxygen species APOPTOSIS Cell proliferation
暂未订购
Mogroside V protects against acetaminophen-induced liver injury by reducing reactive oxygen species and c-jun-N-terminal kinase activation in mice
3
作者 Jia-Lin Shi Tian Sun +3 位作者 Qing Li Chun-Mei Li Jun-Fei Jin Chong Zhang 《World Journal of Hepatology》 2025年第3期170-179,共10页
BACKGROUND High levels of acetaminophen(APAP)consumption can result in significant liver toxicity.Mogroside V(MV)is a bioactive,plant-derived triterpenoid known for its various pharmacological activities.However,the i... BACKGROUND High levels of acetaminophen(APAP)consumption can result in significant liver toxicity.Mogroside V(MV)is a bioactive,plant-derived triterpenoid known for its various pharmacological activities.However,the impact of MV on acute liver injury(ALI)is unknown.AIM To investigate the hepatoprotective potential of MV against liver damage caused by APAP and to examine the underlying mechanisms.METHODS Mice were divided into three groups:Saline,APAP and APAP+MV.MV(10 mg/kg)was given intraperitoneally one hour before APAP(300 mg/kg)administration.Twenty-four hours after APAP exposure,serum transaminase levels,liver necrotic area,inflammatory responses,nitrotyrosine accumulation,and c-jun-N-terminal kinase(JNK)activation were assessed.Additionally,we analyzed reactive oxygen species(ROS)levels,JNK activation,and cell death in alpha mouse liver 12(AML12)cells.RESULTS MV pre-treatment in vivo led to a reduction in the rise of aspartate transaminase and alanine transaminase levels,mitigated liver damage,decreased nitrotyrosine accumulation,and blocked JNK phosphorylation resulting from APAP exposure,without affecting glutathione production.Similarly,MV diminished the APAP-induced increase in ROS,JNK phosphorylation,and cell death in vitro.CONCLUSION Our study suggests that MV treatment alleviates APAP-induced ALI by reducing ROS and JNK activation. 展开更多
关键词 ACETAMINOPHEN Mogroside V reactive oxygen species Liver injury C-jun-N-terminal kinase
暂未订购
Mechanistic insight on nanomaterial-induced reactive oxygen species formation
4
作者 Jianzhong Cao Qingchun Wu +4 位作者 Xuting Liu Xiangyu Zhu Chunfeng Huang Xinyu Wang Yang Song 《Journal of Environmental Sciences》 2025年第5期200-210,共11页
Reactive oxygen species(ROS)are closely related to cell death,proliferation and inflammation.However,excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage.Organisms are often in... Reactive oxygen species(ROS)are closely related to cell death,proliferation and inflammation.However,excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage.Organisms are often inadvertently exposed to nanomaterials(NMs).Therefore,elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications.This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives:(1)Organelle perspective.Investigating the impact of NMmediated ROS onmitochondria,unravelingmechanisms at the organelle level.(2)NMs’perspective.Exploring the broad applications and biosafety considerations of Nanozymes,a unique class of NMs.(3)Cellular system.Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level.Expanding on these perspectives,the paper scrutinizes the regulation of Fenton reactions by NMs in organisms.Furthermore,it introduces diseases resulting fromNM-mediated ROS at the organism level.This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels,offering considerations for the safe design of nanomaterials. 展开更多
关键词 NANOMATERIALS reactive oxygen species(ROS) TOXICITY MITOCHONDRIA Oxidative stress
原文传递
Disruption of Energy Metabolism and Reactive Oxygen Species Homeostasis in Honglian Type-Cytoplasmic Male Sterility(HL-CMS)Rice Pollen
5
作者 WANG Mingyue ZHAO Weibo +6 位作者 FENG Xiaoya CHEN Yi LI Junhao FU Jinmei YAN Yingchun CHU Zhaohui HUANG Wenchao 《Rice science》 2025年第1期81-93,I0056-I0058,共16页
Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in m... Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in mitochondrial morphology in the pollen of HL-CMS remain unclear.In this study,we compared the morphological differences between the pollen of the male sterile line YA and the near-isogenic line NIL-Rf6 using hematoxylin-eosin staining and 4ʹ,6-diamidino-2-phenylindole(DAPI)staining.HL-CMS is characterized by gametophytic sterility,where the aborted pollen grains are empty,and the tapetal layer remains intact.Transmission electron microscopy was employed to observe mitochondrial morphological changes at the microspore stage,revealing significant mitochondrial alterations,characterized by the formation of'large spherical mitochondria',occurred at the binucleate stage in the YA line.Additionally,metabolomics analysis revealed decreased levels of metabolites associated with the carbohydrate and flavonoid pathways.Notably,the decrease in flavonoids was found to contribute to an elevation in reactive oxygen species(ROS)levels.Therefore,we propose a model in which rice fertility is modulated by the levels of pollen carbohydrates and flavonoid metabolites,with impaired mitochondrial energy production and reduced flavonoid biosynthesis as the main causes of ROS accumulation and pollen abortion in rice. 展开更多
关键词 cytoplasmic male sterility POLLEN reactive oxygen species RICE mitochondrial metabolite
在线阅读 下载PDF
Deoxycholic acid induces reactive oxygen species accumulation and promotes colorectal cancer cell apoptosis through the CaMKII-Ca^(2+)pathway
6
作者 Jia-Yan Chen Jing-Yi Wen +6 位作者 Jia-Long Lin Yan Li Yi-Zhang Wu Li-Qin Lou Yong-Liang Lou Zhi-Gui Zuo Xiang Li 《World Journal of Gastrointestinal Oncology》 2025年第8期370-382,共13页
BACKGROUND Deoxycholic acid(DCA),a secondary bile acid,is associated with colorectal carcinogenesis,but its mechanisms remain unclear.AIM To investigate how DCA regulates apoptosis in colorectal cancer(CRC)cells.METHO... BACKGROUND Deoxycholic acid(DCA),a secondary bile acid,is associated with colorectal carcinogenesis,but its mechanisms remain unclear.AIM To investigate how DCA regulates apoptosis in colorectal cancer(CRC)cells.METHODS SW480 and DLD-1 CRC cell lines were used to investigate the mechanism of apoptosis by western blotting,flow cytometry,confocal microscopy,and other methods.RESULTS DCA significantly induced apoptosis,with rates increasing to 7.2%±1.5%in SW480 cells and 14.3%±0.6%in DLD-1 cells after treatment,compared to 4.7%±1.0%and 11.6%±0.8%in controls(P<0.05).Western blot analysis showed upregulation of pro-apoptotic proteins Bax and Cleaved-PARP,with a significant increase in the Cleaved-PARP/PARP ratio(P<0.001).DCA treatment also increased the intracellular reactive oxygen species(ROS)levels of SW480 and DLD-1 cells to 1.2-fold and 1.3-fold,respectively(P<0.01),while the increase of mitochondrial ROS levels in these cells was statistically significant under confocal microscopy.Additionally,cytosolic and mitochondrial Ca^(2+)levels increased 1.3-fold and 1.2-fold,respectively,in SW480 cells(P<0.01),and 1.1-fold and 1.1-fold,respectively,in DLD-1 cells compared with controls(P<0.05).p-CaMKII protein levels were also elevated(P<0.01),indicating activation of the Ca^(2+)-CaMKII signaling pathway.Pharmacological inhibition with BAPTAAM(1μM)reduced mitochondrial Ca^(2+)accumulation and ROS levels in SW480 cells(P<0.05),and suppressed apoptosis.CONCLUSION DCA activates the Ca^(2+)-CaMKII pathway,leading to ROS-mediated apoptosis in CRC cells,providing insights for potential therapeutic targets. 展开更多
关键词 Deoxycholic acid reactive oxygen species Mitochondrial calcium Apoptosis Colorectal cancer
暂未订购
Unveiling role of Cu(Ⅱ)in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid
7
作者 Xiaokang Hou Huanxin Ma +2 位作者 Mengmeng Zhao Chunhua Feng Shishu Zhu 《Chinese Chemical Letters》 2025年第7期206-211,共6页
Light exposure can accelerate phase transformation of Schwertmannite(Sch)coexisting with lowmolecular-weight organic acids(LMWOAs),affecting the cycling of Fe in acid mine drainage(AMD).However,it is still unclear how... Light exposure can accelerate phase transformation of Schwertmannite(Sch)coexisting with lowmolecular-weight organic acids(LMWOAs),affecting the cycling of Fe in acid mine drainage(AMD).However,it is still unclear how this process relates to the fate of heavy metal contaminants.The study comprehensively reports the significant role and speciation redistribution of Cu(Ⅱ)during the photochemical transformation of a Sch/tartaric acid(TA)system.Based on X-ray diffractometer and Fourier transform infrared spectra results,the presence of TA in simulated AMD significantly promoted photoreductive dissolution and phase transformation of Sch to magnetite(Mt)and goethite(Gt)under anoxic and oxic conditions,respectively.With the addition of 10-30 mg/L Cu(Ⅱ),this transformation of Sch/TA system was significantly inhibited,i.e.,only Gt occurred as product under anoxic conditions and even no phase transformation under oxic conditions.The results of EPR and adsorbed Fe(Ⅱ)indicated that the coexistence of Cu(Ⅱ)suppressed the amount of adsorbed Fe(Ⅱ)available for the transformation of Sch via competitive adsorption with Fe(Ⅱ)and inhibition of ligand-to-metal charge transfer(LMCT)of Sch-TA complexes.Chemical speciation and X-ray photoelectron spectroscopy analysis revealed the proportions of adsorbed and structural Cu(Ⅱ)of Sch/TA system were observably enhanced due to an increase in pH and recrystallization/nucleation growth of newly formed Gt.Under anoxic conditions,62.7%-75.88%of Cu(Ⅱ)was adsorbed on the mineral surface,and during the nucleation and growth of secondary mineral phases,15.49%-17.01%of Cu(Ⅱ)was incorporated into their crystal structure.The changes in distribution of Cu(Ⅱ)further suggested the photochemical transformation of Sch facilitated the sequestration of heavy metals and reduced their bioavailability.These findings enhance the understanding of role and redistribution of Cu(Ⅱ)during the transformation of Sch/LMWOA system in euphotic zone of AMD and provid insights of exploring engineered strategies of AMD remediation. 展开更多
关键词 Acid mine drainage Photochemical transformation reactive oxygen species Heavy metals Ligand-to-metal charge transfer
原文传递
Dibutyl phthalate disrupts[Ca^(2+)]_(i),reactive oxygen species,[pH]_(i),protein kinases and mitochondrial activity,impairing sperm function
8
作者 Seung Hyun Park Myung Chan Gye 《Journal of Environmental Sciences》 2025年第5期68-78,共11页
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate(DBP),the effects of DBP on intracellular[Ca^(2+)]and[pH],reactive oxygen species(ROS),lipid peroxidation(LPO),mitochondrial permeability transi... To explore the mechanism of sperm dysfunction caused by dibutyl phthalate(DBP),the effects of DBP on intracellular[Ca^(2+)]and[pH],reactive oxygen species(ROS),lipid peroxidation(LPO),mitochondrial permeability transition pore(mPTP)opening,mitochondrial membrane potential(MMP),adenosine triphosphate(ATP)levels,phosphorylation of protein kinase A(PKA)substrate proteins and phosphotyrosine(p-Tyr)proteins,sperm motility,spontaneous acrosome reaction,and tail bending were examined in mouse spermatozoa.At 100μg/mL,DBP significantly increased tail bending and[Ca^(2+)]i.Interestingly,DBP showed biphasic effects on[pH]i.DBP at 10–100μg/mL significantly decreased sperm motility.Similarly,Ca^(2+)ionophore A23187 decreased[pH]_(i)sperm motility,suggesting that DBP-induced excessive[Ca^(2+)]_(i)decreased sperm motility.DBP significantly increased ROS and LPO.DBP at 100μg/mL significantly decreased mPTP closing,MMP,and ATP levels in spermatozoa,as did H2O2,indicative of ROS-mediatedmitochondrial dysfunction caused by DBP.DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins.DBP at 1–10μg/mL significantly increased the spontaneous acrosome reaction,suggesting that DBP can activate sperm capacitation.Altogether,DBP showed a biphasic effect on intracellular signaling in spermatozoa.At concentrations relevant to seminal ortho-phthalate levels,DBP activates[pH]i,protein tyrosine kinases and PKA via physiological levels of ROS generation,potentiating sperm capacitation.DBP at high doses excessively raises[Ca^(2+)]_(i)and ROS and disrupts[pH]i,impairing the mitochondrial function,tail structural integrity,and sperm motility. 展开更多
关键词 Dibutyl phthalate reactive oxygen species(ROS) [Ca^(2+)]_(i) [pH]_(i) MITOCHONDRIA Protein kinases SPERM
原文传递
Effects of photo-oxidation and transition metals on the formation of reactive oxygen species from aromatic compounds using spectroscopic method
9
作者 Xiaoyu Hu Juanjuan Qin +5 位作者 Yuanyuan Qin Tianyi Zhao Yuxuan Cao Qinghe Cai Lijia Zhang Yang Zhang 《Journal of Environmental Sciences》 2025年第5期1-11,共11页
Particulate matter(PM)can cause adverse health effects by overproducing reactive oxygen species(ROS).Although the ability of PM to induce ROS generation depends on its composi-tion and environmental factors.This study... Particulate matter(PM)can cause adverse health effects by overproducing reactive oxygen species(ROS).Although the ability of PM to induce ROS generation depends on its composi-tion and environmental factors.This study explores how photo-oxidation affects ROS gen-eration from aromatic compounds(ACs,including catechol(CAT),phthalic acid(PA),and 4,4-oxydibenzoic acid(4,4-OBA))and their mixtures with transition metals(TMs,includ-ing Fe(II),Mn(II),and Cu(II))using Fourier-transform infrared(FTIR)and Ultraviolet-visible spectroscopy(UV-Vis).Results showed that photo-oxidation facilitated ROS generation from ACs.CAT-Fe(II)/Cu(II)showed synergistic effects,but 4,4-OBA-Fe(II)/Cu(II)showed antag-onistic effects.ACs-Mn(II)and PA-Fe(II)/Cu(II)exhibited synergistic effects first and then showed antagonistic effects.The different interactions were due to complexation between ACs and TMs.The photo-oxidized ACs-TMs significantly enhanced ROS generation com-pared with ACs-TMs.The study suggested the photo-oxidation mechanism involved that the transfer ofπ-electrons from the ground to an excited state in benzene rings and func-tional groups,leading to the breakage and formation of chemical bonds or easierπ-electron transfer from ACs to TMs.The former could generate ROS directly or produce polymers that promoted ROS generation,while the latter promoted ROS generation by transferringπ-electrons to dissolved oxygen quickly.Our study revealed that both interactions among components and photo-oxidation significantly influenced ROS generation.Future studies should integrate broader atmospheric factors and PM components to fully assess oxidative potential and health impacts. 展开更多
关键词 reactive oxygen species Aromatic compounds Transitional metals PHOTO-OXIDATION
原文传递
Enhanced reactive oxygen species generation:Synergic process of three-electron oxygen reduction and electrochemical ozone production by bimetallic La-Nb oxides
10
作者 Xiaoge Peng Xu Liu +8 位作者 Xiaosa Wang Yuanan Li Suiqin Li Yuhang Wang Zhikang Bao Haoqiang Cao Yunyi Cao Xing Zhong Jianguo Wang 《Journal of Energy Chemistry》 2025年第5期155-165,共11页
The anodic electrochemical ozone production(EOP)and the cathodic three-electron oxygen reduction reaction(3e^(-)ORR)are effective processes for generating active oxygen species(ROS).However,the activation of ozone(O_(... The anodic electrochemical ozone production(EOP)and the cathodic three-electron oxygen reduction reaction(3e^(-)ORR)are effective processes for generating active oxygen species(ROS).However,the activation of ozone(O_(3))by hydroxyl radical(OH)to form ROS poses significant challenges.The micelle balllike bimetallic La-Nb oxides(LNOx)have been developed as a bifunctional electrocatalyst for both the EOP and 3e^(-)ORR reactions.The LNO20 demonstrated a 9.8%of Faradaic efficiency(FE)in O_(3)production and a transfer number of 2.8 electrons in the 3e^(-)ORR.Theoretical calculations support the notion that the five-membered ring mechanism in LNO20 facilitates O_(3)production.Additionally,the incorporation of La provides active sites that enhance the activation of hydrogen peroxide(^(*)H_(2)O_(2))and the generation of OH.This innovative approach synergistically integrates EOP and 3e^(-)ORR,enhancing the activation of O_(3)to produce ROS,demonstrating exceptional efficacy in the degradation of organic pollutants and antimicrobial activity.The study paves the way for designing advanced electrocatalysts for EOP and 3e^(-)ORR and offers insights into utilizing electrochemical method to support other antibacterial strategies. 展开更多
关键词 Three electron oxygen reduction reaction Electrochemical ozone production Synergistic electrosynthesis reactive oxygen species Antibacterial
在线阅读 下载PDF
Nuclear-targeted reactive oxygen species burst:a self-amplifying nanoplatform that overcomes hypoxia and redox barriers for enhanced sonodynamic cancer therapy
11
作者 Xiaoyuan Wang Meng Li +8 位作者 Rong Cheng Liting Zhao Yanfeng Xi Jianming Wang Peng Gao Lingqian Chang Zixian Liu Di Huang Shengbo Sang 《Bio-Design and Manufacturing》 2025年第5期776-799,I0045-I0055,共35页
Although sonodynamic therapy(SDT)is a promising cancer treatment that induces DNA and macromolecular damage through the generation of reactive oxygen species(ROS),its therapeutic efficacy is limited by local hypoxia a... Although sonodynamic therapy(SDT)is a promising cancer treatment that induces DNA and macromolecular damage through the generation of reactive oxygen species(ROS),its therapeutic efficacy is limited by local hypoxia and ROS defense mechanisms in tumors.This study propose d a novel tumor treatment approach,focusing on ROS-mediated therapy by targ eting the nucleus and depleting glutathione(GSH)levels,which was achieved through a nanoplatform(Pt^(2+)-CDs@PpIX)with integrated functions including GSH detection and depletion,pH-responsive drug release,and nuclear targeting.The Pt^(2+)-CDs@PpIX nanoplatform effectively differentiated normal and cancer cells and also exhibited excellent biocompatibility.Depletion of GSH levels and increased ROS sensitivity of cells significantly improved the effectiveness of SDT,as demonstrated in vitro using Pt^(2+)-CDs@PpIX,which also exhibited significant cellular uptake.Pt^(2+)-CDs@PpIX exerted potent antitumor effects in both two-dimensional and three-dimensional tum or microenvironment models(3 DM-7721).Moreover,in 3 DM-7721 models,hepatoma cells(SMMC-7721)demonstrated significant inhibition of motility,invasion,and colony formation after exposure to Pt^(2+)-CDs@PpIX.Furthermore,intravenous administration of the Pt^(2+)-CDs@PpIX nanoplatform enabled precise and rapid tumor-targeting,followed by ultrasound-triggered therapy,without adverse effects in nude mice.Hence,this nanoplatform provides a promising strategy for designing cancer therapies and delivering nuclear-targeted drugs. 展开更多
关键词 Sonodynamic therapy Nuclear targets reactive oxygen species Nanoplatform
暂未订购
Mechanisms underlying prostate cancer sensitivity to reactive oxygen species:overcoming radiotherapy resistance and recent clinical advances
12
作者 Meidan Wang Rui Xing +5 位作者 Liqun Wang Mingyue Pan Ruoyun Zhang Ting Li Weiqiang Sun Jing Zhou 《Cancer Biology & Medicine》 2025年第7期747-761,共15页
Prostate cancer(PCa)is a leading cause of cancer-related mortality among men.Radiotherapy is the cornerstone of PCa treatment.However,a major limitation of radiotherapy is the development of resistance,which compromis... Prostate cancer(PCa)is a leading cause of cancer-related mortality among men.Radiotherapy is the cornerstone of PCa treatment.However,a major limitation of radiotherapy is the development of resistance,which compromises treatment efficacy.Reactive oxygen species(ROS),which are generated by radiation,have a dual role in PCa by inducing DNA damage and apoptosis,while also promoting tumor progression and radioresistance.Elevated ROS levels enhance metabolic reprogramming,activate oncogenic pathways,and influence the tumor microenvironment by modulating immune responses and promoting the epithelial-mesenchymal transition(EMT).Key molecular mechanisms,including the Nrf2/Keap1 signaling axis,Bcl-2 mutations,and Speckle-type POZ protein alterations,contribute to radioresistance by enhancing antioxidant defenses and DNA repair capacity.Additionally,the interplay between hypoxia,androgen receptor variants(AR-Vs),and ferroptosis regulators further influence radiotherapy outcomes.Understanding these resistance mechanisms is crucial for developing targeted strategies to enhance radiosensitivity and improve therapeutic outcomes in PCa patients. 展开更多
关键词 Prostate cancer(PCa) radiation therapy(RT) reactive oxygen species(ROS) radiotherapy resistance ANTIOXIDANTS
暂未订购
A static magnetic field improves salt tolerance for poplar cuttings by regulating root reactive oxygen species homeostasis
13
作者 Jihuai Hu Wenhao Han +6 位作者 Haojie Zhang Nianzhao Wang Guanqing Wu Qiliang Zhu Fengyun Ma Huimei Tian Yanping Wang 《Journal of Forestry Research》 2025年第5期215-227,共13页
A geomagnetic field is a significant factor dur-ing the growth and development of trees.Changes in the magnetic field(MF)will result in reactions at the biochemi-cal,molecular,cellular and gene levels.However,it is no... A geomagnetic field is a significant factor dur-ing the growth and development of trees.Changes in the magnetic field(MF)will result in reactions at the biochemi-cal,molecular,cellular and gene levels.However,it is not clear how a magnetic field affects metabolism and home-ostasis under stressful conditions such as salinity.In this study,a novel method was developed of a static magnetic field(SMF)to investigate magnetobiological changes in trees.The results show that pre-treatment of poplar(Popu-lus×euramericana‘Neva’)cuttings with a static magnetic field significantly mitigated the negative effects of salinity stress on their growth and physiological activities.Bio-chemical assays revealed that several chemical messengers,including hydrogen peroxide(H2O2)and O_(2)^(·-),were sig-nificantly improved in roots treated with salt,implying an increase reactive oxygen species.A static magnetic field also significantly increased proline concentrations,soluble protein contents,and CAT and SOD activities.Electrophysiological experiments further revealed that pre-treatment with a static magnetic field remarkably decreased salt-induced Na^(+)influx and H^(+)efflux which control plant salt tolerance.In pharmacological experiments,because the Na^(+)/H^(+)cor-relation was closely related to the SMF-activated plasma membrane and Na^(+)antiporter activity alleviated the mas-sive accumulation of salt-induced reactive oxygen spe-cies(ROS)within the roots.In addition,a static magnetic field dramatically increased the transcriptional activity of stress-responsive genes,including PtrRBOHD and PtrHA5.Together,these results indicate that SMF reduced Na^(+)influx by activating Na^(+)/H^(+)antiporters and plasma membrane H^(+)-ATPase to effectively maintain homeostasis by regu-lating the reactive oxygen species system and cytoplasmic osmotic potential.Ultimately,these static magnetic field methods improved salt tolerance in poplar cuttings,and,for future research,similar methods could be applied to other plants. 展开更多
关键词 POPLAR Salt tolerance Static magnetic field Plasma membrane Na^(+)transporters reactive oxygen species(ROS)homeostasis
在线阅读 下载PDF
OsbZIP53 Negatively Regulates Immunity Response by Involving in Reactive Oxygen Species and Salicylic Acid Metabolism in Rice 被引量:3
14
作者 WU Lijuan HAN Cong +5 位作者 WANG Huimei HE Yuchang LIN Hai WANG Lei CHEN Chen E Zhiguo 《Rice science》 SCIE CSCD 2024年第2期190-202,I0022-I0028,共20页
The basic region/leucine zipper(bZIP)transcription factors play important roles in plant development and responses to abiotic and biotic stresses.OsbZIP53 regulates resistance to Magnaporthe oryzae in rice by analyzin... The basic region/leucine zipper(bZIP)transcription factors play important roles in plant development and responses to abiotic and biotic stresses.OsbZIP53 regulates resistance to Magnaporthe oryzae in rice by analyzing APIP5-RNAi transgenic plants.To further investigate the biological functions of OsbZIP53,we generated osbzip53 mutants using CRISPR/Cas9 editing and also constructed OsbZIP53 over-expression transgenic plants.Comprehensive analysis of phenotypical,physiological,and transcriptional data showed that knocking-out OsbZIP53 not only improved disease resistance by inducing a hypersensitivity response in plants,but also regulated the immune response through the salicylic acid pathway.Specifically,disrupting OsbZIP53 increased H2O2 accumulation by promoting reactive oxygen species generation through up-regulation of several respiratory burst oxidase homologs(Osrboh genes)and weakened H2O2 degradation by directly targeting OsMYBS1.In addition,the growth of osbzip53 mutants was seriously impaired,while OsbZIP53 over-expression lines displayed a similar phenotype to the wild type,suggesting that OsbZIP53 has a balancing effect on rice immune response and growth. 展开更多
关键词 OsbZIP53 hypersensitive response reactive oxygen species metabolism rice immunity salicylic acid transcription factor
在线阅读 下载PDF
The role of reactive oxygen species in gastric cancer 被引量:2
15
作者 Yuqi Wang Jingli Xu +6 位作者 Zhenjie Fu Ruolan Zhang Weiwei Zhu Qianyu Zhao Ping Wang Can Hu Xiangdong Cheng 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第9期740-753,共14页
Gastric cancer(GC)ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide.Reactive oxygen species(ROS)are highly oxidative oxygen-derived products that have crucial roles in cell signaling reg... Gastric cancer(GC)ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide.Reactive oxygen species(ROS)are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance.ROS are closely associated with the occurrence,development,and treatment of GC.This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction.In addition,the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized.The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC. 展开更多
关键词 Gastric cancer reactive oxygen species ROSantitumor therapy natural products PHARMACOLOGY
暂未订购
Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA_(3)-inhibited reactive oxygen species detoxification and abscisic acid signaling 被引量:1
16
作者 Guoling Guo Haiyan Zhang +10 位作者 Weiyu Dong Bo Xu Youyu Wang Qingchen Zhao Lun Liu Xiaomei Tang Li Liu Zhenfeng Ye Wei Heng Liwu Zhu Bing Jia 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2989-3011,共23页
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberel... Drought stress is a devastating natural disaster driven by the continuing intensification of global warming,which seriously threatens the productivity and quality of several horticultural crops,including pear.Gibberellins(GAs)play crucial roles in plant growth,development,and responses to drought stress.Previous studies have shown significant reductions of GA levels in plants under drought stress;however,our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.Here,we show that drought stress can impair the accumulation of bioactive GAs(BGAs),and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.This gene was significantly induced by drought stress and abscisic acid(ABA)treatment,but was suppressed by GA_(3)treatment.PbrGA2ox1-overexpressing transgenic tobacco plants(Nicotiana benthamiana)exhibited enhanced tolerance to dehydration and drought stresses,whereas knock-down of PbrGA2ox1 in pear(Pyrus betulaefolia)by virus-induced gene silencing led to elevated drought sensitivity.Transgenic plants were hypersensitive to ABA,and had a lower BGAs content,enhanced reactive oxygen species(ROS)scavenging ability,and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.However,the opposite effects were observed with PbrGA2ox1 silencing in pear.Moreover,exogenous GA_(3)treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling,resulting in the compromised drought tolerance of pear.In summary,our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress,providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants. 展开更多
关键词 PEAR GIBBERELLIN drought stress PbrGA2ox1 reactive oxygen species abscisic acid
在线阅读 下载PDF
DNA-based nanosystems to generate reactive oxygen species for nanomedicine 被引量:1
17
作者 Zhongyu Wang Lijun Wang Huaixin Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第11期25-34,共10页
Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology of... Reactive oxygen species(ROS)are essential in various pathological and physiological processes.Developing nanosystems that generate ROS in a controlled manner is of great interest for nanomedicine.DNA nanotechnology offers a promising approach to constructing programmable ROS-generating platforms.By incorporating photosensitizers or metal ions,DNA nanostructures can be designed to produce ROS in a spatially and temporally desired fashion.DNA-based ROS-generating nanosystems hold great potential in intracellular homeostasis regulation,drug release,and cancer therapy.This review summarizes recent advances in developing DNA-based ROS-generating nanosystems,highlights their emerging biomedical applications,and discusses the opportunities and challenges for further applications.DNA nanotechnology provides a versatile toolkit to construct biocompatible ROS-generating platforms for next-generation nanomedicines. 展开更多
关键词 DNA nanotechnology Photodynamic therapy Chemodynamic therapy reactive oxygen species Nanomedicine
原文传递
Reactive oxygen species and oxidative stress in acute pancreatitis:Pathogenesis and new therapeutic interventions 被引量:1
18
作者 Chuan-Chao Xia Hong-Tan Chen +2 位作者 Hao Deng Yi-Ting Huang Guo-Qiang Xu 《World Journal of Gastroenterology》 SCIE CAS 2024年第45期4771-4780,共10页
Acute pancreatitis(AP)is a common acute gastrointestinal disorder affecting approximately 20%of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis.This condition of... Acute pancreatitis(AP)is a common acute gastrointestinal disorder affecting approximately 20%of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis.This condition often progresses to multiple organ failure,significantly increasing morbidity and mortality.Oxidative stress,characterized by an imbalance between the body’s reactive oxygen species(ROS)and antioxidants,activates the inflammatory signaling pathways.Although the pathogenesis of AP is not fully understood,ROS are increasingly recognized as critical in the disease's progression and development.Modulating the oxidative stress pathway has shown efficacy in mitigating the progression of AP.Despite numerous basic studies examining this pathway,comprehensive reviews of recent research remain sparse.This systematic review offers an in-depth examination of the critical role of oxidative stress in the pathogenesis and progression of AP and evaluates the therapeutic potential of antioxidant interventions in its management. 展开更多
关键词 Acute pancreatitis reactive oxygen species Oxidative stress TREATMENT MEDICINE
暂未订购
Electrospun polyvinyl alcohol fibres incorporating an antimicrobial gel for enzymatically controlled reactive oxygen species release
19
作者 Joel Yupanqui Mieles Cian Vyas +6 位作者 Evangelos Daskalakis Mohamed Hassan James Birkett Abdalla M.Omar Gavin Humphreys Carl Diver Paulo Bartolo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期899-925,共27页
Wounds pose a risk to the skin,our body's primary defence against infections.The rise of antibiotic resistance has prompted the development of novel therapies.RO-101^(■)is an antimicrobial gel that delivers thera... Wounds pose a risk to the skin,our body's primary defence against infections.The rise of antibiotic resistance has prompted the development of novel therapies.RO-101^(■)is an antimicrobial gel that delivers therapeutic levels of hydrogen peroxide(H_(2)O_(2)),a reactive oxygen species,directly to the wound bed.In this study,electrospinning was used to incorporate RO-101^(■)into a polyvinyl alcohol(PVA)sub-micron fibrous mesh that can act as a delivery agent,achieve a sustained release profile,and provide a barrier against infection.Adequate incorporation of this gel into sub-micron fibres was confirmed via nuclear magnetic resonance spectroscopy.Furthermore,scanning electron microscopy exhibited smooth and uniform meshes with diameters in the 200-500 nm range.PVA/RO-101 electrospun meshes generated H_(2)O_(2) in concentrations exceeding 1 m M/(g·m L)(1 m M=1 mmol/L)after 24 h,and the role of sterilisation on H_(2)O_(2) release was evaluated.PVA/RO-101meshes exhibited antimicrobial activity against both Gram-positive Staphylococcus aureus(S.aureus)and Gram-negative Pseudomonas aeruginosa(P.aeruginosa)bacteria,achieving viable count reductions of up to 1 log unit CFU/mm^(2)(CFU:colony-forming units).Moreover,these meshes were capable of disrupting biofilm formation,even against multidrug-resistant organisms such as methicillin-resistant S.aureus(MRSA).Furthermore,increasing the RO-101^(■)concentration resulted in higher H_(2)O_(2) production and an enhanced antimicrobial effect,while fibroblast cell viability and proliferation tests showed a concentration-dependent response with high cytocompatibility at low RO-101^(■)concentrations.This study therefore demonstrates the potential of highly absorbent PVA/RO-101 meshes as potential antimicrobial wound dressings. 展开更多
关键词 ANTIMICROBIAL ELECTROSPINNING Hydrogen peroxide Polyvinyl alcohol reactive oxygen species Tissue engineering Wound dressing
暂未订购
Microarrow sensor array with enhanced skin adhesion for transdermal continuous monitoring of glucose and reactive oxygen species
20
作者 Xinshuo Huang Baoming Liang +9 位作者 Shantao Zheng Feifei Wu Mengyi He Shuang Huang Jingbo Yang Qiangqiang Ouyang Fanmao Liu Jing Liu Hui-jiuan Chen Xi Xie 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期14-30,共17页
Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain an... Conventional blood sampling for glucose detection is prone to cause pain and fails to continuously record glucose fluctuations in vivo.Continuous glucose monitoring based on implantable electrodes could induce pain and potential tissue inflammation,and the presence of reactive oxygen species(ROS)due to inflammationmay affect glucose detection.Microneedle technology is less invasive,yet microneedle adhesion with skin tissue is limited.In this work,we developed a microarrow sensor array(MASA),which provided enhanced skin surface adhesion and enabled simultaneous detection of glucose and H_(2)O_(2)(representative of ROS)in interstitial fluid in vivo.The microarrows fabricated via laser micromachining were modified with functional coating and integrated into a patch of a three-dimensional(3D)microneedle array.Due to the arrow tip mechanically interlocking with the tissue,the microarrow array could better adhere to the skin surface after penetration into skin.The MASA was demonstrated to provide continuous in vivo monitoring of glucose and H_(2)O_(2) concentrations,with the detection of H_(2)O_(2) providing a valuable reference for assessing the inflammation state.Finally,the MASA was integrated into a monitoring system using custom circuitry.This work provides a promising tool for the stable and reliable monitoring of blood glucose in diabetic patients. 展开更多
关键词 Microarrow sensor array Glucose sensing reactive oxygen species sensing Integrated system Continuous monitoring
暂未订购
上一页 1 2 53 下一页 到第
使用帮助 返回顶部