期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity
1
作者 Yu Lin Defang Ding +5 位作者 Shicheng Zhu Qunlei Wen Huangjingwei Li Zhen Li Youwen Liu Yi Shen 《Nano Research》 SCIE EI CSCD 2024年第3期1232-1241,共10页
Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and a... Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and activation still unqualified the thresholds of economic viability.Herein,we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process.The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H_(2)O to be free H_(2)O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites.Furthermore,potential-dependent electrochemical impedance spectroscopy(EIS)reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H_(2)O molecules to produce more protic hydrogen,and dimerize into H_(2) at the Ni sites.By the sequential management of reactive H_(2)O molecules,NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity(49 mV@10 mA∙cm^(-2) over 140 h).Profoundly,this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions. 展开更多
关键词 hydrogen evolution activity complementary multisite catalysts sequential reactive water management interfacial water molecules
原文传递
Dynamic Stability Improvement of Decentralized Wind Farms by Effective Distribution Static Compensator 被引量:1
2
作者 Muhammad Naveed Naz Saqif Imtiaz +3 位作者 Muhammad Kamran Liaquat Bhatti Waseem Qaiser Awan Muhammad Siddique Ashfaq Riaz 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第3期516-525,共10页
Dynamic instability of decentralized wind energy farms is a major issue to deliver continuous green energy to electricity consumers.This instability is caused by variations of voltage and frequency parameters due to i... Dynamic instability of decentralized wind energy farms is a major issue to deliver continuous green energy to electricity consumers.This instability is caused by variations of voltage and frequency parameters due to intermittencies in wind power.Previously,droop control and inverter-based schemes have been proposed to regulate the voltage by balancing reactive power,while inertial control,digital mapping tech-nique of proportional-integral-differential(PID)controller and efficiency control strategy have been developed to regulate the frequency.In this paper,voltage stability is improved by a new joint strategy of distribution static compensator(DSTATCOM)six-pulse controller based reactive power management among decentralized wind turbines and controlled charging of capacitor bank.The frequency stability is ensured by a joint coordinated utilization of capacitor bank and distributed wind power turbines dispatching through a new DSTATCOM six-pulse controller scheme.In both strategies,power grid is contributed as a backup source with less priority.These new joint strategies for voltage and frequency stabilities will enhance the stable active power delivery to end users.A system test case is developed to verify the proposed joint strategies.The test results of the proposed new schemes are proved to be effective in terms of stability improvement of voltage,frequency and active power generation. 展开更多
关键词 Dynamic instability decentralized wind energy farms voltage instability frequency instability distribution static compensator(DSTATCOM) reactive power management in-termittency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部