Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and a...Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and activation still unqualified the thresholds of economic viability.Herein,we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process.The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H_(2)O to be free H_(2)O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites.Furthermore,potential-dependent electrochemical impedance spectroscopy(EIS)reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H_(2)O molecules to produce more protic hydrogen,and dimerize into H_(2) at the Ni sites.By the sequential management of reactive H_(2)O molecules,NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity(49 mV@10 mA∙cm^(-2) over 140 h).Profoundly,this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions.展开更多
Dynamic instability of decentralized wind energy farms is a major issue to deliver continuous green energy to electricity consumers.This instability is caused by variations of voltage and frequency parameters due to i...Dynamic instability of decentralized wind energy farms is a major issue to deliver continuous green energy to electricity consumers.This instability is caused by variations of voltage and frequency parameters due to intermittencies in wind power.Previously,droop control and inverter-based schemes have been proposed to regulate the voltage by balancing reactive power,while inertial control,digital mapping tech-nique of proportional-integral-differential(PID)controller and efficiency control strategy have been developed to regulate the frequency.In this paper,voltage stability is improved by a new joint strategy of distribution static compensator(DSTATCOM)six-pulse controller based reactive power management among decentralized wind turbines and controlled charging of capacitor bank.The frequency stability is ensured by a joint coordinated utilization of capacitor bank and distributed wind power turbines dispatching through a new DSTATCOM six-pulse controller scheme.In both strategies,power grid is contributed as a backup source with less priority.These new joint strategies for voltage and frequency stabilities will enhance the stable active power delivery to end users.A system test case is developed to verify the proposed joint strategies.The test results of the proposed new schemes are proved to be effective in terms of stability improvement of voltage,frequency and active power generation.展开更多
文摘Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and activation still unqualified the thresholds of economic viability.Herein,we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process.The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H_(2)O to be free H_(2)O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites.Furthermore,potential-dependent electrochemical impedance spectroscopy(EIS)reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H_(2)O molecules to produce more protic hydrogen,and dimerize into H_(2) at the Ni sites.By the sequential management of reactive H_(2)O molecules,NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity(49 mV@10 mA∙cm^(-2) over 140 h).Profoundly,this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions.
文摘Dynamic instability of decentralized wind energy farms is a major issue to deliver continuous green energy to electricity consumers.This instability is caused by variations of voltage and frequency parameters due to intermittencies in wind power.Previously,droop control and inverter-based schemes have been proposed to regulate the voltage by balancing reactive power,while inertial control,digital mapping tech-nique of proportional-integral-differential(PID)controller and efficiency control strategy have been developed to regulate the frequency.In this paper,voltage stability is improved by a new joint strategy of distribution static compensator(DSTATCOM)six-pulse controller based reactive power management among decentralized wind turbines and controlled charging of capacitor bank.The frequency stability is ensured by a joint coordinated utilization of capacitor bank and distributed wind power turbines dispatching through a new DSTATCOM six-pulse controller scheme.In both strategies,power grid is contributed as a backup source with less priority.These new joint strategies for voltage and frequency stabilities will enhance the stable active power delivery to end users.A system test case is developed to verify the proposed joint strategies.The test results of the proposed new schemes are proved to be effective in terms of stability improvement of voltage,frequency and active power generation.