The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u...The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.展开更多
M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase re...M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, whiCh'was endothermic. Under the experimental condition, the apparent activation energy was 4. 41 kJ·mol^-1 , the'apparent order of reaction for Na2 CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330℃.展开更多
Amine-based carbon dioxide(CO2)capture is still limited by high desorption energy consumption.Fixing CO2 into carbonate is a safer and more permanent method.In this work,calcium oxide(CaO)is introduced to perform chem...Amine-based carbon dioxide(CO2)capture is still limited by high desorption energy consumption.Fixing CO2 into carbonate is a safer and more permanent method.In this work,calcium oxide(CaO)is introduced to perform chemical desorption instead of thermal desorption on 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU)aqueous solution after CO2 absorption.The X-ray diffraction(XRD)patterns of solid products show the formation of calcite calcium carbonate(CaCO3),which prove the feasibility of this method.The effects of reaction temperature,reaction time and Ca2+/CO32-molar ratios on the related reactions in CO2 absorption-mineralization process and CaCO3 precipitation are discussed,and purer CaCO3 is obtained by ultrasonic treatment.The CaCO3 content can be increased to 95.8%and the CO2 desorption ratio can achieve 80%by 30 min ultrasonic dispersion treatment under the conditions(40℃,180 min,Ca2+/CO32-molar ratio=1.0).After five cycles,DBU aqueous solution shows stable CO2 absorption and mineralization ability.Fourier transform infrared spectroscopy(FT-IR)spectra of the reaction process also indicate the regeneration of the solvent.Compared with thermal desorption,this process is exothermic,almost without no additional heat.展开更多
The influence of Cu content on the reaction process, reaction behavior and obtained products in the Cu-ZrC system, as well as their relationships, were investigated. The results showed that Zr C was synthesized throug...The influence of Cu content on the reaction process, reaction behavior and obtained products in the Cu-ZrC system, as well as their relationships, were investigated. The results showed that Zr C was synthesized through the diffusion and dissolution of C into a Cu-Zr liquid. Increasing the Cu content enhanced the amount of Cu-Zr liquid formed at the early stage but decreased the amount of C atoms dissolving into the melt at unit time. Consequently, the ignition time initially decreased and then increased. Conversely, with an increased Cu content, the energy required for igniting the neighboring unreacted powders increased,while the heat released by the reaction and the dwell time of the compact at high temperatures decreased.These effects then resulted in the reduction of combustion wave velocity, combustion temperature and Zr C particle size. Furthermore, the synthesis of ZrC is a multistage process, which provides a nonuniform distributed Zr C particle size. The sub-μm Zr C particle reinforced Cu matrix composite was fabricated by adding a ZrC-Cu master alloy prepared through a self-propagating high-temperature synthesis reaction into liquid Cu.展开更多
Annular channeling has seriously troubled deep oil and gas exploitation,and the reduction of hydrostatic pressure of cement slurry in the waiting stage is considered one of the main causes of early annular channeling....Annular channeling has seriously troubled deep oil and gas exploitation,and the reduction of hydrostatic pressure of cement slurry in the waiting stage is considered one of the main causes of early annular channeling.However,at present,there is still a lack of sufficient research on and understanding of the relationship between the time-varying law of hydrostatic pressure of cement slurry and the early hydration process in different well sections,especially in high-temperature well sections.Therefore,in this paper,a hydrostatic pressure measurement experiment of cement slurry at low temperature(50-90℃)and high temperature(120-180℃)was carried out using a self-developed hydrostatic pressure measurement device of cement slurry.Then,the cement slurry cured at 90℃ for 1-8 h was sampled by the freeze-drying method,and XRD and TG experiments were carried out.The results show that the hydrostatic curves of low and high temperatures both show a trend of rapid increase first,then remain stable,and then decrease rapidly.With an increase in temperature,the time of the stable and falling segments of the hydrostatic curve of the cement slurry gradually decreases.By fitting the rapid pressure drop time points of cement slurry at different temperatures,it can be determined that the rapid pressure drop time and temperature show a functional relationship.The XRD and TG results of different curing times at 90℃ were analyzed.It can be seen that in the early stage of the hydration induction period,the connection between cement particles is not close,and the hydrostatic pressure of the cement slurry column remains stable.As the hydration process enters the acceleration period,the cement particles crosslink with each other through hydration products to form a bridge structure,and the hydrostatic pressure of the cement paste begins to decrease.This shows that the pressure drop time can be controlled by regulating the hydration process to provide theoretical guidance for cement slurry preparation and slurry column design in cementing engineering.展开更多
β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the ...β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the synthesized composites were investigated by X-ray powder diffraction and scanning electronic microscope,and the formation process of the composites was discussed. The results show that the composites with different compositions can be obtained by controlling the heating temperature and contents of zircon and carbon black. The proper temperature to synthesize the composites is 1773 K.展开更多
The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of th...The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.展开更多
The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless o...The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.展开更多
The oxide-zeolite process provides a promising way for one-step production of aromatics from syngas,whereas the reasons for the dramatic effect of intimacy between oxide and zeolite in the composite catalyst on the pr...The oxide-zeolite process provides a promising way for one-step production of aromatics from syngas,whereas the reasons for the dramatic effect of intimacy between oxide and zeolite in the composite catalyst on the product selectivity are still unclear. In order to explore the optimal intimacy and the essential influence factors, ZnCrOxcombined with ZSM-5 are employed to prepare the composite catalysts with different distances between the two components by changing the mixing methods. An aromatic selectivity of 74%(with CO conversion to be 16%) is achieved by the composite catalyst when the intimacy is in the range of nanometer. A so-called ‘iterative reactions’ mechanism of intermediates over oxides is then proposed and studied: the intermediate chemical can undergo a hydrogenation reaction on oxide.So the shorter the intermediates stay on oxide, the more of chance for C-C coupling takes place on zeolite to form aromatics. Moreover, the aero-environments of reaction is found to impact on the extent of iterative reaction as well. Therefore, when the intimacy between the two components changes, the extent of iterative reactions vary, resulting in alteration of product distribution. This work provides new insight in understanding the mechanisms during the complex process of OX-ZEO composite catalysis and sheds light to the design of a high-yield catalyst for synthetization of aromatics from syngas.展开更多
A novel technique combining electrophoretic deposition (EPD) and reaction bonding process (RBP) is developed to fabricate thick ZrO2/Al2O3 composite coatings. Mixed organic solvents are used here to make suspension co...A novel technique combining electrophoretic deposition (EPD) and reaction bonding process (RBP) is developed to fabricate thick ZrO2/Al2O3 composite coatings. Mixed organic solvents are used here to make suspension containing yttria stablised zirconia (YSZ) and aluminium (Al). The results show that densely packed green form coatings are deposited using a mixture of ethanol and acetylacetone as suspension medium and ball milling for 48 hours. On subsequent heat treatment, melting and oxidation of aluminium in the green forms promote densification during sintering. By these means, thick, uniform and crack-free ZrtVA^Oa composite coatings have been fabricated on metal substrate.展开更多
The experiment was carried out in a combined blowing converter.The natural gas was supplied as the cooling medium for the bottom lance.The blow- ing practice of medium P hot metal (0.30-0.85% [P]) indicated that with ...The experiment was carried out in a combined blowing converter.The natural gas was supplied as the cooling medium for the bottom lance.The blow- ing practice of medium P hot metal (0.30-0.85% [P]) indicated that with better stirring at the bottom of the converter and lower P_(CO),this steelmgking process was favorable to reduce the amount of [C] and [O] and increase the (P_2O_5)/[P]. The maximum rate of dephospborization might be high up to 0.0a5%/min and the P content in steel could be reduced to lower than 0.03% by single slag-forming operation.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be...One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be considered in the reactor performance: the “conversion” of the feed and the “selectivity” of the process, which is the conversion split between the desired and the undesired products. In this work, a comprehensive model is developed and used to assess the impact of pore-size distribution (PSD) on both conversion and selectivity in series catalytic reactions. In particular, the evaluation considers the effects of various combinations of micro- and macro-porosity, the potential advantages of radial variation of the porosity in the catalyst pellets, and the effect of pellet size. Results show that, for series reactions, when the formation of the desired product is followed by an undesirable degradation reaction, higher porosity in pellets, particularly in the micro-range, gives higher overall conversion, but lowers selectivity towards the formation of the desired product. Selectivity in these pellets can be improved by using a non-uniform PSD that provides a radial gradient of effective diffusivity in pellets increasing from the center to the outer pellet surface. The pellet size also has a significant effect, and larger pellets show lower selectivity in most cases. In general, conversion and selectivity trends move in opposite directions with changes in PSD and the pore structural properties of pellets. Therefore, finding the optimum design of pellets is an optimization process that requires process modeling. Consequently, selecting the best catalyst properties involves optimization, and the needed tool is a comprehensive mathematical model that takes into account the details of mass transport and reaction kinetics in the catalyst pellets. Our primary objective has been the development of a flexible mathematical model that would be applicable to a wide range of conditions and can be used as a design tool and an optimization platform.展开更多
Solar-driven photocatalytic hydrogen production via water splitting is considered as one of the most promising green and sustainable strategies,with the potential to replace traditional fossil fuels[1,2].Generally,thi...Solar-driven photocatalytic hydrogen production via water splitting is considered as one of the most promising green and sustainable strategies,with the potential to replace traditional fossil fuels[1,2].Generally,this photocatalytic reaction process includes the following steps:First,the semiconductor photocatalyst is photoexcited to generate photoinduced excitons on a femtosecond timescale.Next,the photoinduced excitons are separated into photogenerated electrons and holes,occurring within a femtosecond to picosecond timescale.Subsequently,only a small fraction of the photogenerated electrons and holes can overcome kinetic barriers,such as phonon scattering and bulk defects,to migrate to the surface。展开更多
The water-gas shift(WGS)reaction plays a pivotal role in various industrial processes,particularly in hydrogen production and carbon monoxide removal.As global energy demands rise and environmental concerns intensify,...The water-gas shift(WGS)reaction plays a pivotal role in various industrial processes,particularly in hydrogen production and carbon monoxide removal.As global energy demands rise and environmental concerns intensify,the development of efficient and sustainable catalysts for the low-temperature WGS(LT-WGS)reaction has gained significant attention.This review focuses on recent advancements in water-gas-shift catalyst design for low-temperature conditions and emerging renewable energy-driven catalytic processes,such as photocatalysis,electrocatalysis,and plasma catalysis for the WGS reaction,which are less commonly explored in existing reviews.We systematically analyze mechanisms studies of LT-WGS,rational catalyst design strategies,and recent frontier advances in the development of highly efficient catalysts.Furthermore,this review provides actionable insights for refining catalyst architectures,enhancing operational efficiency,elucidating reaction pathways,and pioneering hybrid technologies,all contributing to further advancements in this field.展开更多
基金supported by the National Natural Science Foundation of China(22408227,22238005)the Postdoctoral Research Foundation of China(GZC20231576).
文摘The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.
基金Item Sponsored by National Natural Science Foundation of China (50234040)
文摘M, a particular industrial waste, was selected to detoxify chromium slag at a high temperature. The carbon remaining in M reduced Cr ( Ⅳ ) of Na2 CrO4 borne in the chromium slag to Cr ( Ⅲ ) in the solid phase reaction, and its thermodynamics and kinetics were studied. The reduction process of Na2CrO4 by carbon produced CO, whiCh'was endothermic. Under the experimental condition, the apparent activation energy was 4. 41 kJ·mol^-1 , the'apparent order of reaction for Na2 CrO4 was equal to one, and the partial pressure of CO was only 0.22 Pa at 1 330℃.
基金the National Natural Science Foundation of China(No.21878190)National Key R&D Program of China(2018YFB0605700)for financial support。
文摘Amine-based carbon dioxide(CO2)capture is still limited by high desorption energy consumption.Fixing CO2 into carbonate is a safer and more permanent method.In this work,calcium oxide(CaO)is introduced to perform chemical desorption instead of thermal desorption on 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU)aqueous solution after CO2 absorption.The X-ray diffraction(XRD)patterns of solid products show the formation of calcite calcium carbonate(CaCO3),which prove the feasibility of this method.The effects of reaction temperature,reaction time and Ca2+/CO32-molar ratios on the related reactions in CO2 absorption-mineralization process and CaCO3 precipitation are discussed,and purer CaCO3 is obtained by ultrasonic treatment.The CaCO3 content can be increased to 95.8%and the CO2 desorption ratio can achieve 80%by 30 min ultrasonic dispersion treatment under the conditions(40℃,180 min,Ca2+/CO32-molar ratio=1.0).After five cycles,DBU aqueous solution shows stable CO2 absorption and mineralization ability.Fourier transform infrared spectroscopy(FT-IR)spectra of the reaction process also indicate the regeneration of the solvent.Compared with thermal desorption,this process is exothermic,almost without no additional heat.
基金supported by the National Key Research and Development Program (No. 2017YFB0305300)the National Natural Science Foundation of China (Nos. 51404157, 51374144)+1 种基金Public Welfare Projects of Science and Technology Department of Zhejiang Province (Grant No. 2017C31118)the Natural Science Foundation of Zhejiang Province (Grant No. LY17E050003)
文摘The influence of Cu content on the reaction process, reaction behavior and obtained products in the Cu-ZrC system, as well as their relationships, were investigated. The results showed that Zr C was synthesized through the diffusion and dissolution of C into a Cu-Zr liquid. Increasing the Cu content enhanced the amount of Cu-Zr liquid formed at the early stage but decreased the amount of C atoms dissolving into the melt at unit time. Consequently, the ignition time initially decreased and then increased. Conversely, with an increased Cu content, the energy required for igniting the neighboring unreacted powders increased,while the heat released by the reaction and the dwell time of the compact at high temperatures decreased.These effects then resulted in the reduction of combustion wave velocity, combustion temperature and Zr C particle size. Furthermore, the synthesis of ZrC is a multistage process, which provides a nonuniform distributed Zr C particle size. The sub-μm Zr C particle reinforced Cu matrix composite was fabricated by adding a ZrC-Cu master alloy prepared through a self-propagating high-temperature synthesis reaction into liquid Cu.
基金support provided by the Natural Science Foundation of Science and Technology Department of Sichuan Province,China(2024NSFSC0154)the Open Fund for Research Platform of the School of New Energy and Materials,Southwest Petroleum University(2022SCYYQKCCL010).
文摘Annular channeling has seriously troubled deep oil and gas exploitation,and the reduction of hydrostatic pressure of cement slurry in the waiting stage is considered one of the main causes of early annular channeling.However,at present,there is still a lack of sufficient research on and understanding of the relationship between the time-varying law of hydrostatic pressure of cement slurry and the early hydration process in different well sections,especially in high-temperature well sections.Therefore,in this paper,a hydrostatic pressure measurement experiment of cement slurry at low temperature(50-90℃)and high temperature(120-180℃)was carried out using a self-developed hydrostatic pressure measurement device of cement slurry.Then,the cement slurry cured at 90℃ for 1-8 h was sampled by the freeze-drying method,and XRD and TG experiments were carried out.The results show that the hydrostatic curves of low and high temperatures both show a trend of rapid increase first,then remain stable,and then decrease rapidly.With an increase in temperature,the time of the stable and falling segments of the hydrostatic curve of the cement slurry gradually decreases.By fitting the rapid pressure drop time points of cement slurry at different temperatures,it can be determined that the rapid pressure drop time and temperature show a functional relationship.The XRD and TG results of different curing times at 90℃ were analyzed.It can be seen that in the early stage of the hydration induction period,the connection between cement particles is not close,and the hydrostatic pressure of the cement slurry column remains stable.As the hydration process enters the acceleration period,the cement particles crosslink with each other through hydration products to form a bridge structure,and the hydrostatic pressure of the cement paste begins to decrease.This shows that the pressure drop time can be controlled by regulating the hydration process to provide theoretical guidance for cement slurry preparation and slurry column design in cementing engineering.
基金Project(50274021) supported by the National Natural Science Foundation of China and Baoshan Iron and Steel Co., Ltd.
文摘β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the synthesized composites were investigated by X-ray powder diffraction and scanning electronic microscope,and the formation process of the composites was discussed. The results show that the composites with different compositions can be obtained by controlling the heating temperature and contents of zircon and carbon black. The proper temperature to synthesize the composites is 1773 K.
文摘The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.
基金Subsidized by the Special Funds for Major State Basic Research Projects of China(Contract/grant number:199064809)
文摘The effect of pan-milling on morphological structure,processability and properties of PVC was studied throughSEM,FTIR,granulometer,GPC and mechanical properties test in the hope of gaining ease in operation,needless ofplasticizers,a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of“plasticizing PVC by itself”.The experimental results show that during pan-milling at ambienttemperature,within 2-3 min,the microcrystalline structure of PVC becomes indistinct,the grain size of PVC is reducedfrom 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased,the variation of molecular weightdistribution is indistinct,the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from18.2-22.1 Nm to 14.7-18.4 Nm,respectively,the processability of PVC is markedly improved,and the mechanicalproperties get enhanced too.
基金the National Key R&D Program of China(2016YFA0202804)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020400)+2 种基金the National Natural Science Foundation of China(Nos.21506204,21476226)Dalian Science Foundation for Distinguished Young Scholars(2016RJ04)the Youth Innovation Promotion Association CAS for financial support
文摘The oxide-zeolite process provides a promising way for one-step production of aromatics from syngas,whereas the reasons for the dramatic effect of intimacy between oxide and zeolite in the composite catalyst on the product selectivity are still unclear. In order to explore the optimal intimacy and the essential influence factors, ZnCrOxcombined with ZSM-5 are employed to prepare the composite catalysts with different distances between the two components by changing the mixing methods. An aromatic selectivity of 74%(with CO conversion to be 16%) is achieved by the composite catalyst when the intimacy is in the range of nanometer. A so-called ‘iterative reactions’ mechanism of intermediates over oxides is then proposed and studied: the intermediate chemical can undergo a hydrogenation reaction on oxide.So the shorter the intermediates stay on oxide, the more of chance for C-C coupling takes place on zeolite to form aromatics. Moreover, the aero-environments of reaction is found to impact on the extent of iterative reaction as well. Therefore, when the intimacy between the two components changes, the extent of iterative reactions vary, resulting in alteration of product distribution. This work provides new insight in understanding the mechanisms during the complex process of OX-ZEO composite catalysis and sheds light to the design of a high-yield catalyst for synthetization of aromatics from syngas.
文摘A novel technique combining electrophoretic deposition (EPD) and reaction bonding process (RBP) is developed to fabricate thick ZrO2/Al2O3 composite coatings. Mixed organic solvents are used here to make suspension containing yttria stablised zirconia (YSZ) and aluminium (Al). The results show that densely packed green form coatings are deposited using a mixture of ethanol and acetylacetone as suspension medium and ball milling for 48 hours. On subsequent heat treatment, melting and oxidation of aluminium in the green forms promote densification during sintering. By these means, thick, uniform and crack-free ZrtVA^Oa composite coatings have been fabricated on metal substrate.
文摘The experiment was carried out in a combined blowing converter.The natural gas was supplied as the cooling medium for the bottom lance.The blow- ing practice of medium P hot metal (0.30-0.85% [P]) indicated that with better stirring at the bottom of the converter and lower P_(CO),this steelmgking process was favorable to reduce the amount of [C] and [O] and increase the (P_2O_5)/[P]. The maximum rate of dephospborization might be high up to 0.0a5%/min and the P content in steel could be reduced to lower than 0.03% by single slag-forming operation.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
文摘One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be considered in the reactor performance: the “conversion” of the feed and the “selectivity” of the process, which is the conversion split between the desired and the undesired products. In this work, a comprehensive model is developed and used to assess the impact of pore-size distribution (PSD) on both conversion and selectivity in series catalytic reactions. In particular, the evaluation considers the effects of various combinations of micro- and macro-porosity, the potential advantages of radial variation of the porosity in the catalyst pellets, and the effect of pellet size. Results show that, for series reactions, when the formation of the desired product is followed by an undesirable degradation reaction, higher porosity in pellets, particularly in the micro-range, gives higher overall conversion, but lowers selectivity towards the formation of the desired product. Selectivity in these pellets can be improved by using a non-uniform PSD that provides a radial gradient of effective diffusivity in pellets increasing from the center to the outer pellet surface. The pellet size also has a significant effect, and larger pellets show lower selectivity in most cases. In general, conversion and selectivity trends move in opposite directions with changes in PSD and the pore structural properties of pellets. Therefore, finding the optimum design of pellets is an optimization process that requires process modeling. Consequently, selecting the best catalyst properties involves optimization, and the needed tool is a comprehensive mathematical model that takes into account the details of mass transport and reaction kinetics in the catalyst pellets. Our primary objective has been the development of a flexible mathematical model that would be applicable to a wide range of conditions and can be used as a design tool and an optimization platform.
文摘Solar-driven photocatalytic hydrogen production via water splitting is considered as one of the most promising green and sustainable strategies,with the potential to replace traditional fossil fuels[1,2].Generally,this photocatalytic reaction process includes the following steps:First,the semiconductor photocatalyst is photoexcited to generate photoinduced excitons on a femtosecond timescale.Next,the photoinduced excitons are separated into photogenerated electrons and holes,occurring within a femtosecond to picosecond timescale.Subsequently,only a small fraction of the photogenerated electrons and holes can overcome kinetic barriers,such as phonon scattering and bulk defects,to migrate to the surface。
基金supported by the National Key R&D Program of China(Grant No.2024YFB4006702)Dalian Science and Technology Talent Innovation Support Program Project(Grant No.2023RY011)+1 种基金Dalian Science and Technology Innovation Fund Project(Grant No.2024JJ12CG031)Dalian University of Technology Xinghai Outstanding Young Scholar Program.
文摘The water-gas shift(WGS)reaction plays a pivotal role in various industrial processes,particularly in hydrogen production and carbon monoxide removal.As global energy demands rise and environmental concerns intensify,the development of efficient and sustainable catalysts for the low-temperature WGS(LT-WGS)reaction has gained significant attention.This review focuses on recent advancements in water-gas-shift catalyst design for low-temperature conditions and emerging renewable energy-driven catalytic processes,such as photocatalysis,electrocatalysis,and plasma catalysis for the WGS reaction,which are less commonly explored in existing reviews.We systematically analyze mechanisms studies of LT-WGS,rational catalyst design strategies,and recent frontier advances in the development of highly efficient catalysts.Furthermore,this review provides actionable insights for refining catalyst architectures,enhancing operational efficiency,elucidating reaction pathways,and pioneering hybrid technologies,all contributing to further advancements in this field.