期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
并行规约与扫描原语在ReRAM架构上的性能优化
1
作者 金洲 段懿洳 +2 位作者 伊恩鑫 戢昊男 刘伟峰 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第5期80-91,共12页
规约与扫描是并行计算中的核心原语,其并行加速至关重要。然而,冯·诺依曼体系结构下无法避免的数据移动使其面临“存储墙”等性能与功耗瓶颈。近来,基于ReRAM等非易失存储器的存算一体架构支持的原位计算可一步实现矩阵-向量乘,已... 规约与扫描是并行计算中的核心原语,其并行加速至关重要。然而,冯·诺依曼体系结构下无法避免的数据移动使其面临“存储墙”等性能与功耗瓶颈。近来,基于ReRAM等非易失存储器的存算一体架构支持的原位计算可一步实现矩阵-向量乘,已在机器学习与图计算等应用中展现了巨大的潜力。提出面向忆阻器存算一体架构的规约与扫描的并行加速方法,重点阐述基于矩阵-向量乘运算的计算流程和在忆阻器架构上的映射方法,实现软硬件协同设计,降低功耗并提高性能。相比于GPU,所提规约与扫描原语可实现高达两个数量级的加速,平均加速比也可达到两个数量级。分段规约与扫描最大可达到五个(平均四个)数量级的加速,并将功耗降低79%。 展开更多
关键词 规约 扫描 reram 存算一体架构 并行计算
在线阅读 下载PDF
基于ReRAM的神经网络加速器发展概况
2
作者 周川波 《西部广播电视》 2018年第24期246-251,共6页
本文关注2016年体系结构领域两个重要的峰会ISCA和MICRO,简单介绍了这两个会议有关神经网络加速器的研究成果,重点关注了基于金属氧化物的电阻式随机访问存储器(Metal-oxide Resistive Random Access Memory,ReRAM)的有关文章。参照计... 本文关注2016年体系结构领域两个重要的峰会ISCA和MICRO,简单介绍了这两个会议有关神经网络加速器的研究成果,重点关注了基于金属氧化物的电阻式随机访问存储器(Metal-oxide Resistive Random Access Memory,ReRAM)的有关文章。参照计算机系统层次化结构,本文首先介绍了Re RAM的原理和结构,然后介绍了基于Re RAM设计的简单神经网络架构,该架构仅仅支持30个连接权重,支持神经网络十分有限。PRIME架构极大地扩展了对神经网络计算的支持,针对不同网络(多层感知器,卷积神经网络)和较大规模数据集(MNIST)都取得了较好的实验效果。PRIME虽然对神经网络加速效果较好,但是其提供的软硬件接口仍然只针对PRIME架构本身,缺乏扩展性。NEUTRAMS工具集是为了消除硬件约束提出来,该工具集通过仿真层对硬件的抽象,使得在表示层设计的神经网络不需要修改即可实现在不同硬件架构上移植。实验均证明了上述方法的有效性。 展开更多
关键词 神经网络加速器 reram PRIME NEUTRAMS 深度学习
在线阅读 下载PDF
A Resource-Efficient Weight Quantization and Mapping Method for Crossbar Arrays in ReRAM-Based Computing-in-Memory Systems
3
作者 MINGYUAN MA WEI JIANG +3 位作者 JUNTAO LIU LI DU ZHONGYUAN MA YUAN DU 《Integrated Circuits and Systems》 2025年第4期233-242,共10页
Resistance Random Access Memory(ReRAM)crossbar arrays have been used in compute in-memory(CIM)application owing to its high bit-density,non-volatility,and capability to perform multiplyaccumulate(MAC)calculations effi... Resistance Random Access Memory(ReRAM)crossbar arrays have been used in compute in-memory(CIM)application owing to its high bit-density,non-volatility,and capability to perform multiplyaccumulate(MAC)calculations efficiently.The expansion of the size of the crossbars has led to the emerging challenge of high IR voltage drop and more complex logic control devices.In this paper,we propose a progressive weight pruning strategy based on gradient sensitivity analysis to reduce redundant parameters and enhance overall sparsity.Building upon this sparsity-enhanced structure,we further introduce two complementary weight quantization-mapping methods tailored for high-bit and low-bit quantization scenarios.The proposed method utilizes group quantization for clustering to merge weights in higher bits and leverages differential properties to conduct spectral clustering for merging weights in lower bits.Experimental results indicate notable savings in crossbar resources with minimal loss of precision.Moreover,we designed a carrier board-FPGA testing platform and deployed a neural network on a 32×32 size ReRAM crossbar.The results show that the proposed algorithm saves 42%of units,and the recognition accuracy of the MNIST dataset is within an acceptable range(91.5%to 88.3%). 展开更多
关键词 rerams compute in-memory weight mapping QUANTIZATION spectral clustering network pruning
在线阅读 下载PDF
Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM 被引量:2
4
作者 孙鹏霄 刘肃 +1 位作者 李泠 刘明 《Journal of Semiconductors》 EI CAS CSCD 2014年第10期56-59,共4页
Monte Carlo (MC) simulations, including multiple physical and chemical mechanisms, were performed to investigate the microstructure evolution of a conducting metal filament in a typical oxide-electrolyte-based ReRAM... Monte Carlo (MC) simulations, including multiple physical and chemical mechanisms, were performed to investigate the microstructure evolution of a conducting metal filament in a typical oxide-electrolyte-based ReRAM. It has been revealed that the growth direction and geometry of the conductive filament are controlled by the ion migration rate in the electrolyte layer during the formation procedure. When the migration rate is rela- tive high, the filament is shown to grow from cathode to anode. When the migration rate is low, the growth direction is expected to start from the anode. Simulated conductive filament (CF) geometries and I-V characteristics are also illustrated and analyzed. A good agreement between the simulation results and experiment data is obtained. 展开更多
关键词 reram Monte Carlo method growth direction of filament ion migration rate
原文传递
ARCHER:a ReRAM-based accelerator for compressed recommendation systems
5
作者 Xinyang SHEN Xiaofei LIAO +3 位作者 Long ZHENG Yu HUANG Dan CHEN Hai JIN 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第5期147-160,共14页
Modern recommendation systems are widely used in modern data centers.The random and sparse embedding lookup operations are the main performance bottleneck for processing recommendation systems on traditional platforms... Modern recommendation systems are widely used in modern data centers.The random and sparse embedding lookup operations are the main performance bottleneck for processing recommendation systems on traditional platforms as they induce abundant data movements between computing units and memory.ReRAM-based processing-in-memory(PIM)can resolve this problem by processing embedding vectors where they are stored.However,the embedding table can easily exceed the capacity limit of a monolithic ReRAM-based PIM chip,which induces off-chip accesses that may offset the PIM profits.Therefore,we deploy the decomposed model on-chip and leverage the high computing efficiency of ReRAM to compensate for the decompression performance loss.In this paper,we propose ARCHER,a ReRAM-based PIM architecture that implements fully yon-chip recommendations under resource constraints.First,we make a full analysis of the computation pattern and access pattern on the decomposed table.Based on the computation pattern,we unify the operations of each layer of the decomposed model in multiply-and-accumulate operations.Based on the access observation,we propose a hierarchical mapping schema and a specialized hardware design to maximize resource utilization.Under the unified computation and mapping strategy,we can coordinatethe inter-processing elements pipeline.The evaluation shows that ARCHER outperforms the state-of-the-art GPU-based DLRM system,the state-of-the-art near-memory processing recommendation system RecNMP,and the ReRAM-based recommendation accelerator REREC by 15.79×,2.21×,and 1.21× in terms of performance and 56.06×,6.45×,and 1.71× in terms of energy savings,respectively. 展开更多
关键词 recommendation system reram processing-in-memory embedding layer
原文传递
电阻开关式非挥发性随机存储器的机理及其材料 被引量:6
6
作者 季振国 陈伟峰 毛启楠 《功能材料与器件学报》 CAS CSCD 北大核心 2011年第2期195-204,共10页
在众多新型非挥发存储器中,电阻式存储器具有结构简单,存储密度高,读写速度快,数据保持时间长,制作方法与传统CMOS工艺兼容性好等优点成为研究的热点。本文简要回顾了电阻式存储器器件的结构、机制、材料以及制备方法,并讨论了电阻式存... 在众多新型非挥发存储器中,电阻式存储器具有结构简单,存储密度高,读写速度快,数据保持时间长,制作方法与传统CMOS工艺兼容性好等优点成为研究的热点。本文简要回顾了电阻式存储器器件的结构、机制、材料以及制备方法,并讨论了电阻式存储器的单极性和双极性电阻开关特性,最后着重介绍了电阻开关特性的块体主导机制和界面主导机制。 展开更多
关键词 电阻式存储器 非挥发性 随机存储器 电阻开关
在线阅读 下载PDF
面向阻变存储器的长短期记忆网络加速器的训练和软件仿真 被引量:4
7
作者 刘鹤 季宇 +2 位作者 韩建辉 张悠慧 郑纬民 《计算机研究与发展》 EI CSCD 北大核心 2019年第6期1182-1191,共10页
长短期记忆(long short-term memory,LSTM)网络是一种循环神经网络,其擅长处理和预测时间序列中间隔和延迟较长的事件,多用于语音识别、机器翻译等领域.然而受限于内存带宽的限制,现今的多数神经网络加速器件的计算模式并不能高效处理... 长短期记忆(long short-term memory,LSTM)网络是一种循环神经网络,其擅长处理和预测时间序列中间隔和延迟较长的事件,多用于语音识别、机器翻译等领域.然而受限于内存带宽的限制,现今的多数神经网络加速器件的计算模式并不能高效处理长短期记忆网络计算;而阻变存储器交叉开关结构能够以存内计算形式完成高效、高密度的向量矩阵乘运算,从而成为一种高效处理长短期记忆网络的极具潜力的加速器设计模式.研究了面向阻变存储器的长短期记忆神经网络加速器模拟工具以及相应的神经网络训练算法.该模拟工具能够以时钟驱动的形式模拟设计者提出的以阻变存储器交叉开关结构为核心加速部件的长短期记忆加速器微体系结构,从而进行设计空间探索;同时改进了神经网络训练算法以适应阻变存储器特性.这一模拟工具基于System-C实现,且对于核心计算部分实现了图形处理器加速,可以提高阻变存储器器件的仿真速度,为探索设计空间提供便利. 展开更多
关键词 阻变存储器 长短期记忆网络 训练算法 仿真框架 神经网络
在线阅读 下载PDF
基于近端策略优化的阻变存储硬件加速器自动量化 被引量:3
8
作者 魏正 张兴军 +2 位作者 卓志敏 纪泽宇 李泳昊 《计算机研究与发展》 EI CSCD 北大核心 2022年第3期518-532,共15页
卷积神经网络在诸多领域已经取得超出人类的成绩.但是,随着模型存储开销和计算复杂性的不断增加,限制处理单元和内存单元之间数据交换的"内存墙"问题阻碍了其在诸如边缘计算和物联网等资源受限环境中的部署.基于阻变存储的硬... 卷积神经网络在诸多领域已经取得超出人类的成绩.但是,随着模型存储开销和计算复杂性的不断增加,限制处理单元和内存单元之间数据交换的"内存墙"问题阻碍了其在诸如边缘计算和物联网等资源受限环境中的部署.基于阻变存储的硬件加速器由于具有高集成度和低功耗等优势,被广泛应用于加速矩阵-向量乘运算,但是其不适合进行32 b浮点数计算,因此需要量化来降低数据精度.手工为每一层确定量化位宽非常耗时,近期的研究针对现场可编程门阵列(field programmable gate array,FPGA)平台使用基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)的强化学习来进行自动量化,但需要将连续动作转换为离散动作,并通过逐层递减量化位宽来满足资源约束条件.基于此,提出基于近端策略优化(proximal policy optimization,PPO)算法的阻变存储硬件加速器自动量化,使用离散动作空间来避免动作空间转换步骤,设计新的奖励函数使PPO自动学习满足资源约束的最优量化策略,并给出软硬件设计改动以支持混合精度计算.实验结果表明:与粗粒度的量化相比,提出的方法可以减少20%~30%的硬件开销,而不引起模型准确度的过多损失.与其他自动量化相比,提出的方法搜索时间短,并且在相同的资源约束条件下可以进一步减少约4.2%的硬件开销.这为量化算法和硬件加速器的协同设计提供了参考. 展开更多
关键词 自动量化 强化学习 基于阻变存储的硬件加速器 神经网络 内存计算
在线阅读 下载PDF
基于一种新兴的非易失性存储器的固态硬盘平台开发
9
作者 庞理 安九华 +2 位作者 宋炜哲 尹萍 张颖 《信息与电脑》 2019年第2期93-95,共3页
随着科技的飞速发展,大量新兴技术不断涌向市场,其中可配置的固态硬盘平台是评估新兴的非易失性存储器的必需品。笔者基于XilinxZynq芯片设计了一个固态硬盘原型系统,并且实现了基于ReRAM的固态硬盘系统。ATTO硬盘测试工具用于测试基于R... 随着科技的飞速发展,大量新兴技术不断涌向市场,其中可配置的固态硬盘平台是评估新兴的非易失性存储器的必需品。笔者基于XilinxZynq芯片设计了一个固态硬盘原型系统,并且实现了基于ReRAM的固态硬盘系统。ATTO硬盘测试工具用于测试基于ReRAM存储器的存储介质的潜在性能优势,其卓越的随机访问能力表明ReRAM在大数据方面有着广阔的应用前景。 展开更多
关键词 reram 固态硬盘 NANDFLASH Zynq
在线阅读 下载PDF
一种面向忆阻器加速器的神经网络模型压缩框架 被引量:2
10
作者 沈林耀 王琴 +1 位作者 蒋剑飞 景乃锋 《微电子学与计算机》 2021年第8期20-27,共8页
当前基于忆阻器的神经网络加速器存在的资源需求高、系统功耗大等问题,提出了一种包含剪枝及量化算法在内的神经网络模型压缩框架.根据忆阻器阵列紧密耦合的特点,设计了一种忆阻器阵列感知的规则化增量剪枝算法,在保证模型准确度的条件... 当前基于忆阻器的神经网络加速器存在的资源需求高、系统功耗大等问题,提出了一种包含剪枝及量化算法在内的神经网络模型压缩框架.根据忆阻器阵列紧密耦合的特点,设计了一种忆阻器阵列感知的规则化增量剪枝算法,在保证模型准确度的条件下实现了硬件资源的节省;针对忆阻器加速器系统中ADC单元和忆阻器阵列功耗占比过大等问题,设计了一种二的幂次量化算法以降低加速器系统中ADC的精度需求以及计算阵列中低阻值忆阻器器件个数,实现系统功耗的降低.实验结果表明:提出的神经网络模型压缩框架在忆阻器加速器部署网络时可取得17.2〜30.7倍的能效提升以及4.3〜9.3倍的加速比,模型的精度损失维持在1%左右. 展开更多
关键词 忆阻器加速器 神经网络 量化 剪枝
在线阅读 下载PDF
柔性忆阻器研究进展 被引量:1
11
作者 孙博文 钱凯 王卿璞 《微纳电子与智能制造》 2019年第4期76-86,共11页
柔性电子器件是未来功能化集成电子发展的方向之一,其中用于信息存储及处理的高性能柔性存储器是重要的组成部分。忆阻器(resistive random access memory,ReRAM)因其超快运行速度、微缩性好及功耗低等优点,成为最具应用前景的下一代非... 柔性电子器件是未来功能化集成电子发展的方向之一,其中用于信息存储及处理的高性能柔性存储器是重要的组成部分。忆阻器(resistive random access memory,ReRAM)因其超快运行速度、微缩性好及功耗低等优点,成为最具应用前景的下一代非易失性存储器之一。主要总结了忆阻器发展历程、电阻转变物理机制、以及柔性忆阻器的研究进展。通过对比不同介质层柔性忆阻器在阻变转换耐久性和弯曲疲劳耐久性的差异,系统讨论分析了影响柔性忆阻器性能的原因。 展开更多
关键词 柔性器件 存储器 柔性忆阻器
在线阅读 下载PDF
复合陶瓷涂层中添加剂对涂层性能的影响
12
作者 佟树善 傅正生 《武汉水运工程学院学报》 1990年第1期46-50,共5页
本文通过对等离子喷涂陶瓷涂层的微观分析,研究了添加剂对氧化铝陶瓷涂层组织和结构的影响。这项研究将是有利于进一步认识陶瓷涂层的形成和探求改善涂层性能的途径。
关键词 复合陶瓷涂层 添加剂 孔隙率
在线阅读 下载PDF
The study of synaptic plasticity in the ZnO memristor elements for neuromorphic AI
13
作者 R.V.Tominov Z.E.Vakulov +2 位作者 D.S.J.Rodriguez I.S.Ugryumov V.A.Smirnov 《Journal of Advanced Dielectrics》 2025年第4期31-35,共5页
The paper presents the results of experimental studies of synaptic plasticity in a memristive memory element based on nanocrystalline ZnO films grown by pulsed laser deposition.The obtained results can be used in the ... The paper presents the results of experimental studies of synaptic plasticity in a memristive memory element based on nanocrystalline ZnO films grown by pulsed laser deposition.The obtained results can be used in the development of technological bases for the formation of high-performance multi-level artificial synapses for elements of neuroelectronics and hardware neural networks. 展开更多
关键词 Neuromorphic systems reram multi-level resistive switching synaptic plasticity ZnO memristor elements
在线阅读 下载PDF
Recent advancements in metal oxide-based hybrid nanocomposite resistive random-access memories for artificial intelligence
14
作者 Anirudh Kumar Kirti Bhardwaj +4 位作者 Satendra Pal Singh Youngmin Lee Sejoon Lee Mohit Kumar Sanjeev K.Sharma 《InfoMat》 2025年第3期31-74,共44页
Artificial intelligence(AI)advancements are driving the need for highly paral-lel and energy-efficient computing analogous to the human brain and visualsystem.Inspired by the human brain,resistive random-access memori... Artificial intelligence(AI)advancements are driving the need for highly paral-lel and energy-efficient computing analogous to the human brain and visualsystem.Inspired by the human brain,resistive random-access memories(ReRAMs)have recently emerged as an essential component of the intelligentcircuitry architecture for developing high-performance neuromorphic comput-ing systems.This occurs due to their fast switching with ultralow power con-sumption,high ON/OFF ratio,excellent data retention,good endurance,andeven great possibilities for altering resistance analogous to their biologicalcounterparts for neuromorphic computing applications.Additionally,with theadvantages of photoelectric dual modulation of resistive switching,ReRAMsallow optically inspired artificial neural networks and reconfigurable logicoperations,promoting innovative in-memory computing technology forneuromorphic computing and image recognition tasks.Optoelectronicneuromorphic computing architectured ReRAMs can simulate neural func-tionalities,such as light-triggered long-term/short-term plasticity.They can beused in intelligent robotics and bionic neurological optoelectronic systems.Metal oxide(MOx)–polymer hybrid nanocomposites can be beneficial as anactive layer of the bistable metal–insulator–metal ReRAM devices,which holdpromise for developing high-performance memory technology.This reviewexplores the state of the art for developing memory storage,advancement inmaterials,and switching mechanisms for selecting the appropriate materials asactive layers of ReRAMs to boost the ON/OFF ratio,flexibility,and memorydensity while lowering programming voltage.Furthermore,material designcum-synthesis strategies that greatly influence the overall performance of MOx–polymer hybrid nanocomposite ReRAMs and their performances arehighlighted.Additionally,the recent progress of multifunctional optoelectronicMOx–polymer hybrid composites-based ReRAMs are explored as artificial syn-apses for neural networks to emulate neuromorphic visualization and memo-rize information.Finally,the challenges,limitations,and future outlooks ofthe fabrication of MOx–polymer hybrid composite ReRAMs over the conven-tional von Neumann computing systems are discussed. 展开更多
关键词 memory capacity metal oxide-polymer nanocomposites multifunctional artificial synapse optoelectronic reram switching mechanism
原文传递
Optimized stateful material implication logic for three- dimensional data manipulation 被引量:6
15
作者 Gina C. Adam Brian D. Hoskins +1 位作者 Mirko Prezioso Dmitri B. Strukov 《Nano Research》 SCIE EI CAS CSCD 2016年第12期3914-3923,共10页
The monolithic three-dimensional integration of memory and logic circuits could dramatically improve the performance and energy efficiency of computing systems. Some conventional and emerging memories are suitable for... The monolithic three-dimensional integration of memory and logic circuits could dramatically improve the performance and energy efficiency of computing systems. Some conventional and emerging memories are suitable for vertical integration, including highly scalable metal-oxide resistive switching devices ("memristors"). However, the integration of logic circuits has proven to be much more challenging than expected. In this study, we demonstrated memory and logic functionality in a monolithic three-dimensional circuit by adapting the recently proposed memristor-based stateful material implication logic. By modifying the original circuit to increase its robustness to device imperfections, we experimentally showed, for the first time, a reliable multi-cycle multi-gate material implication logic operation and half-adder circuit within a three- dimensional stack of monolithically integrated memristors. Direct data manipulation in three dimensions enables extremely compact and high-throughput logic- in-memory computing and, remarkably, presents a viable solution for the Feynman Grand Challenge of implementing an 8-bit adder at the nanoscale. 展开更多
关键词 material implication logic MEMRISTOR resistive random-accessmemory reram three-dimensionalintegration
原文传递
Ferroelectricity-modulated resistive switching in Pt/Si:HfO_2/HfO_(2-x)/Pt memory
16
作者 蒋然 杜翔浩 韩祖银 《Journal of Semiconductors》 EI CAS CSCD 2016年第8期67-71,共5页
It is investigated for the effect ofa ferroelectric Si:Hf02 thin film on the resistive switching in a stacked Pt/Si:HfO2/highly-oxygen-deficient HfO2-x/Pt structure. Improved resistance performance was observed. It ... It is investigated for the effect ofa ferroelectric Si:Hf02 thin film on the resistive switching in a stacked Pt/Si:HfO2/highly-oxygen-deficient HfO2-x/Pt structure. Improved resistance performance was observed. It was concluded that the observed resistive switching behavior was related to the modulation of the width and height of a depletion barrier in the HfO2-x layer, which was caused by the Si:HfO2 ferroelectric polarization field effect. Reliable switching reproducibility and long data retention were observed in these memory cells, suggesting their great potential in non-volatile memories applications with full compatibility and simplicity. 展开更多
关键词 reram FERROELECTRIC models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部