An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exerc...Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function.展开更多
Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images...Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images,where targets are often small and similar within categories,detectingthese fine-grained targets is challenging.To address this,we constructed a fine-grained dataset ofremotely sensed airplanes;for the problems of remote sensing fine-grained targets with obvious head-to-tail distributions and large variations in target sizes,we proposed the DWDet fine-grained tar-get detection and recognition algorithm.First,for the problem of unbalanced category distribution,we adopt an adaptive sampling strategy.In addition,we construct a deformable convolutional blockand improve the decoupling head structure to improve the detection effect of the model ondeformed targets.Then,we design a localization loss function,which is used to improve the model’slocalization ability for targets of different scales.The experimental results show that our algorithmimproves the overall accuracy of the model by 4.1%compared to the baseline model,and improvesthe detection accuracy of small targets by 12.2%.The ablation and comparison experiments alsoprove the effectiveness of our algorithm.展开更多
Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may...Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution o...Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental ...This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.展开更多
Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satell...Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.展开更多
This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By e...This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.展开更多
“Go!Faster!”“Pass the ball!”Echoes of encouragement ring across the football field at Yisa Primary School,nestled high in the mountains of Butuo County in Liangshan Yi Autonomous Prefecture,southwest China’s Sich...“Go!Faster!”“Pass the ball!”Echoes of encouragement ring across the football field at Yisa Primary School,nestled high in the mountains of Butuo County in Liangshan Yi Autonomous Prefecture,southwest China’s Sichuan Province.Against a backdrop of cloudwrapped peaks,girls in jerseys dart across the turf with infectious energy.展开更多
Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and...Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.展开更多
With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,s...With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.展开更多
Acoustic detection has many applications across science and technology from medicine to imaging and communications.However,most acoustic sensors have a common limitation in that the detection must be near the acoustic...Acoustic detection has many applications across science and technology from medicine to imaging and communications.However,most acoustic sensors have a common limitation in that the detection must be near the acoustic source.Alternatively,laser interferometry with picometer-scale motional displacement detection can rapidly and precisely measure sound-induced minute vibrations on remote surfaces.Here,we demonstrate the feasibility of sound detection up to 100 kHz at remote sites with≈60 m optical path length via laser homodyne interferometry.Based on our ultrastable hertz linewidth laser with 10-15 fractional stability,our laser interferometer achieves 0.5 pm/Hz1/2 displacement sensitivity near 10 kHz,bounded only by laser frequency noise over 10 kHz.Between 140 Hz and 15 kHz,we achieve a homodyne acoustic sensing sensitivity of subnanometer/Pascal across our conversational frequency overtones.The minimal sound pressure detectable over 60 m optical path length is≈2 mPa,with dynamic ranges over 100 dB.With the demonstrated standoff picometric distance metrology,we successfully detected and reconstructed musical scores of normal conversational volumes with high fidelity.The acoustic detection via this precision laser interferometer could be applied to selective area sound sensing for remote acoustic metrology,optomechanical vibrational motion sensing,and ultrasensitive optical microphones at the laser frequency noise limits.展开更多
Cardiac arrest(CA)is a major global public health challenge,and its high morbidity and low survival rate pose severe tests for emergency and critical care.Although modern CPR techniques significantly improve the immed...Cardiac arrest(CA)is a major global public health challenge,and its high morbidity and low survival rate pose severe tests for emergency and critical care.Although modern CPR techniques significantly improve the immediate resuscitation success rate in CA patients,poor outcomes such as neurological impairment still significantly increase the long-term care burden and reduce the quality of survival.In recent years,the application of remote ischemic conditioning(RIC)has attracted much attention in the field of cardiac arrest through its unique myocardial-nerve dual protection mechanism against the heart.This paper summarizes the conceptual connotation,physiological mechanism,operation method,and its application progress in CA and explores the potential of this technology in the field of CA care in order to provide reference for the research and application of RIC in the field of emergency care.展开更多
A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)m...A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)multi-scale cross-attention feature fusion,and(3)a boundary-constrained decoder.This design overcomes CNN s limited receptive fields and ViT s quadratic complexity while efficiently capturing both local features and global dependencies.Evaluations on LoveDA and ISPRS Vaihingen datasets demonstrate superior segmentation accuracy and boundary preservation compared to existing approaches,with the dual-branch structure maintaining computational efficiency throughout the process.展开更多
Enhancing the carbon sink of terrestrial ecosystems is an essential nature-based solution to mitigate global warming and achieve the target of carbon neutrality.Over recent decades,China has launched a series of long-...Enhancing the carbon sink of terrestrial ecosystems is an essential nature-based solution to mitigate global warming and achieve the target of carbon neutrality.Over recent decades,China has launched a series of long-running and large-scale ambitious forestation projects.However,there is still a lack of year-to-year evaluation on the effects of afforestation on carbon sequestration.Satellite remote sensing provides continuous observations of vegetation dynamics and land use and land cover change,is becoming a practical tool to evaluate the changes of vegetation productivity driven by afforestation.Here,a spatially-explicit analysis was conducted by combining Moderate Resolution Imaging Spectroradiometer(MODIS)land cover and three up-to-date remote sensing gross primary productivity(GPP)datasets of China.The results showed that the generated afforestation maps have similar spatial distribution with the national forest inventory data at the provincial level.The accumulative areas of afforestation were 3.02×10^(5)km^(2)in China from 2002 to 2018,it was mainly distributed in Southwest(SW),South(Sou),Southeast(SE)and Northeast(NE)of China.Among them,SW possesses the largest afforestation sub-region,with an area of 9.38×10^(4)km^(2),accounting for 31.06%of the total.There were divergent trends of affores-tation area among different sub-regions.The southern sub-regions showed increasing trends,while the northern sub-regions showed decreasing trends.In keeping with these,the center of annual afforestation moved to the south after 2009.The southern sub-regions were the majority of the cumula-tive GPP,accounting for nearly 70%of the total.The GPP of new afforestation showed an increasing trend from 2002 to 2018,and the increasing rate was higher than existing forests.After afforestation,the GPP change of afforestation was higher than adjacent non-forest over the same period.Our work provides new evidence that afforestation of China has enhanced the carbon assimilation and will deepen our understanding of dynamics of carbon sequestration driven by afforestation.展开更多
Remote sensing scene image classification is a prominent research area within remote sensing.Deep learningbased methods have been extensively utilized and have shown significant advancements in this field.Recent progr...Remote sensing scene image classification is a prominent research area within remote sensing.Deep learningbased methods have been extensively utilized and have shown significant advancements in this field.Recent progress in these methods primarily focuses on enhancing feature representation capabilities to improve performance.The challenge lies in the limited spatial resolution of small-sized remote sensing images,as well as image blurring and sparse data.These factors contribute to lower accuracy in current deep learning models.Additionally,deeper networks with attention-based modules require a substantial number of network parameters,leading to high computational costs and memory usage.In this article,we introduce ERSNet,a lightweight novel attention-guided network for remote sensing scene image classification.ERSNet is constructed using a deep separable convolutional network and incorporates an attention mechanism.It utilizes spatial attention,channel attention,and channel self-attention to enhance feature representation and accuracy,while also reducing computational complexity and memory usage.Experimental results indicate that,compared to existing state-of-the-art methods,ERSNet has a significantly lower parameter count of only 1.2 M and reduced Flops.It achieves the highest classification accuracy of 99.14%on the EuroSAT dataset,demonstrating its suitability for application on mobile terminal devices.Furthermore,experimental results from the UCMerced land use dataset and the Brazilian coffee scene also confirm the strong generalization ability of this method.展开更多
This paper presents a standardised workflow for conducting hazard assessments of mass wasting processes in remote mountain areas with limited data.The methodology integrates geomorphological mapping and remote sensing...This paper presents a standardised workflow for conducting hazard assessments of mass wasting processes in remote mountain areas with limited data.The methodology integrates geomorphological mapping and remote sensing techniques and is adaptable to different national standards,thus ensuring its applicability in a variety of contexts.The principal objective is to guarantee the safety of mountainous regions,particularly in the vicinity of essential infrastructure,where the scope for implementing structural measures is restricted.The framework commences with comprehensive geomorphological mapping,which facilitates the identification of past hazardous processes and potential future hazards.New technologies,such as uncrewed aerial vehicles(UAVs),are employed to create high-resolution DEMs,which are particularly beneficial in regions with limited data availability.These models facilitate the assessment of potential hazards and inform decisions regarding protective measures.The utilisation of UAVs enhances the accuracy and efficiency of data collection,particularly in remote mountainous regions where alternative remotely sensed information may be unavailable.The integration of modern approaches into traditional hazard assessment methods allows for a comprehensive analysis of the spatial distribution of factors driving mass wasting processes.This workflow provides valuable insights that assist in the prioritisation of interventions and the optimisation of risk reduction in high mountainous areas.展开更多
This article focuses on the remote diagnosis and analysis of rail vehicle status based on the data of the Train Control Management System(TCMS).It first expounds on the importance of train diagnostic analysis and desi...This article focuses on the remote diagnosis and analysis of rail vehicle status based on the data of the Train Control Management System(TCMS).It first expounds on the importance of train diagnostic analysis and designs a unified TCMS data frame transmission format.Subsequently,a remote data transmission link using 4G signals and data processing methods is introduced.The advantages of remote diagnosis are analyzed,and common methods such as correlation analysis,fault diagnosis,and fault prediction are explained in detail.Then,challenges such as data security and the balance between diagnostic accuracy and real-time performance are discussed,along with development prospects in technological innovation,algorithm optimization,and application promotion.This research provides ideas for remote analysis and diagnosis based on TCMS data,contributing to the safe and efficient operation of rail vehicles.展开更多
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金funded by the National Natural Science Foundation of China(81871854,72374014)the National Key R&D Program of China(2020YFC2008804)+1 种基金the Shanghai Jiao Tong University Young Talent Cultivation Program in Liberal Arts(2024QN041)the Shanghai Jiao Tong University School of Medicine:Nursing Development Program(SJTUHLXK2024).
文摘Background Evidence on the effects of different exercise interventions on cognitive function is insufficient.Aims To evaluate the feasibility and effects of remotely supervised aerobic exercise(AE)and resistance exercise(RE)interventions in older adults with mild cognitive impairment(MCI).Methods This study is a 6-month pilot three-arm randomised controlled trial.Eligible participants(n=108)were recruited and randomised to the AE group,RE group or control(CON)group with a 1:1:1 ratio.Interventions were delivered at home with remote supervision.We evaluated participants’global cognition,memory,executive function,attention,physical activity levels,physical performance and muscle strength of limbs at baseline,3 months(T1)and 6 months(T2)after randomisation.A linear mixed-effects model was adopted for data analyses after controlling for covariates.Tukey’s method was used for adjusting for multiple comparisons.Sensitivity analyses were performed after excluding individuals with low compliance rates.Results 15(13.89%)participants dropped out.The median compliance rates in the AE group and RE group were 67.31%and 93.27%,respectively.After adjusting for covariates,the scores of the Alzheimer’s Disease Assessment Scale-Cognitive subscale in the AE group decreased by 2.04(95%confidence interval(CI)−3.41 to−0.67,t=−2.94,p=0.004)and 1.53(95%CI−2.88 to−0.17,t=−2.22,p=0.028)points more than those in the CON group at T1 and T2,respectively.The effects of AE were still significant at T1(estimate=−1.70,95%CI−3.20 to−0.21,t=−2.69,p=0.021),but lost statistical significance at T2 after adjusting for multiple comparisons.As for executive function,the Stroop time interference in the RE group decreased by 11.76 s(95%CI−21.62 to−1.90,t=−2.81,p=0.015)more than that in the AE group at T2 after Tukey’s adjustment.No other significant effects on cognitive functions were found.Conclusions Both remotely supervised AE and RE programmes are feasible in older adults with MCI.AE has positive effects on global cognition,and RE improves executive function.
基金supported by National Natural Science Foundation of China(No.62471034)Hebei Natural Science Foundation(No.F2023105001).
文摘Fine-grained aircraft target detection in remote sensing holds significant research valueand practical applications,particularly in military defense and precision strikes.Given the complex-ity of remote sensing images,where targets are often small and similar within categories,detectingthese fine-grained targets is challenging.To address this,we constructed a fine-grained dataset ofremotely sensed airplanes;for the problems of remote sensing fine-grained targets with obvious head-to-tail distributions and large variations in target sizes,we proposed the DWDet fine-grained tar-get detection and recognition algorithm.First,for the problem of unbalanced category distribution,we adopt an adaptive sampling strategy.In addition,we construct a deformable convolutional blockand improve the decoupling head structure to improve the detection effect of the model ondeformed targets.Then,we design a localization loss function,which is used to improve the model’slocalization ability for targets of different scales.The experimental results show that our algorithmimproves the overall accuracy of the model by 4.1%compared to the baseline model,and improvesthe detection accuracy of small targets by 12.2%.The ablation and comparison experiments alsoprove the effectiveness of our algorithm.
基金supported partly by the National Natural Science Foundation of China,No.82071332the Chongqing Natural Science Foundation Joint Fund for Innovation and Development,No.CSTB2023NSCQ-LZX0041 (both to ZG)。
文摘Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
文摘Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
文摘This study investigates the effects of AI-mediated communication (AMC) on trust-building and negotiation outcomes in professional remote collaboration settings. Through a mixed-methods approach combining experimental design and qualitative analysis (N = 120), we examine how AI intermediaries influence communication dynamics, relationship building, and decision-making processes. Results indicate that while AMC initially creates barriers to trust formation, it ultimately leads to enhanced communication outcomes and stronger professional relationships when implemented with appropriate transparency and support. The study revealed a 31% improvement in cross-cultural understanding and a 24% increase in negotiation satisfaction rates when using AI-mediated channels with proper transparency measures. These findings contribute to the theoretical understanding of technology-mediated communication and practical applications for organizations implementing AI communication tools.
文摘Remote sensing and web-based platforms have emerged as vital tools in the effective monitoring of mangrove ecosystems, which are crucial for coastal protection, biodiversity, and carbon sequestration. Utilizing satellite imagery and aerial data, remote sensing allows researchers to assess the health and extent of mangrove forests over large areas and time periods, providing insights into changes due to environmental stressors like climate change, urbanization, and deforestation. Coupled with web-based platforms, this technology facilitates real-time data sharing and collaborative research efforts among scientists, policymakers, and conservationists. Thus, there is a need to grow this research interest among experts working in this kind of ecosystem. The aim of this paper is to provide a comprehensive literature review on the effective role of remote sensing and web-based platform in monitoring mangrove ecosystem. The research paper utilized the thematic approach to extract specific information to use in the discussion which helped realize the efficiency of digital monitoring for the environment. Web-based platforms and remote sensing represent a powerful tool for environmental monitoring, particularly in the context of forest ecosystems. They facilitate the accessibility of vital data, promote collaboration among stakeholders, support evidence-based policymaking, and engage communities in conservation efforts. As experts confront the urgent challenges posed by climate change and environmental degradation, leveraging technology through web-based platforms is essential for fostering a sustainable future for the forests of the world.
文摘This study presents an AI-driven Spatial Decision Support System (SDSS) aimed at transforming groundwater suitability assessments for domestic and irrigation uses in Visakhapatnam District, Andhra Pradesh, India. By employing advanced remote sensing, GIS, and machine learning techniques, groundwater quality data from 50 monitoring wells, sourced from the Central Ground Water Board (CGWB), was meticulously analysed. Key parameters, including pH, electrical conductivity, total dissolved solids, and major ion concentrations, were evaluated against World Health Organization (WHO) standards to determine domestic suitability. For irrigation, advanced metrics such as Sodium Adsorption Ratio (SAR), Kelly’s Ratio, Residual Sodium Carbonate (RSC), and percentage sodium (% Na) were utilized to assess water quality. The integration of GIS for spatial mapping and AI models for predictive analytics allows for a comprehensive visualization of groundwater quality distribution across the district. Additionally, the irrigation water quality was evaluated using the USA Salinity Laboratory diagram, providing essential insights for effective agricultural water management. This innovative SDSS framework promises to significantly enhance groundwater resource management, fostering sustainable practices for both domestic use and agriculture in the region.
文摘“Go!Faster!”“Pass the ball!”Echoes of encouragement ring across the football field at Yisa Primary School,nestled high in the mountains of Butuo County in Liangshan Yi Autonomous Prefecture,southwest China’s Sichuan Province.Against a backdrop of cloudwrapped peaks,girls in jerseys dart across the turf with infectious energy.
文摘Multifarious regions around the world are exposed to natural hazards and disasters,each with unique characteristics.A higher frequency of extreme hydro-meteorological events,most probably related to climate change,and an increase in vulnerable population have been addressed as potential causes of such disasters.To mitigate the consequences of these disasters,Disaster Risk Management,including hazard assessment,elements-at-risk mapping,vulnerability and risk assessment of spatial components as well as Earth Observation(EO)products and Geographic Information Systems(GIS),should be considered.Multihazard assessment entails the evaluation of relationships between various hazards,including interconnected or cascading events,as well as focusing on various levels from global to local community levels,as each level manifests particular objectives and spatial data.This paper presents an overview of the diverse types of spatial data and explores the methods applied in hazard and risk assessments,with volcanic eruptions serving as a specific example.The rapid development of scientific research and the advancement of Earth Observation satellites in recent years have revolutionized the concepts of geologists and researchers.These satellites now play an indispensable role in supporting first responders during major disasters.The coordination of satellite deployment ensures a swift response along with allowing for the timely delivery of critical images.In tandem,remote sensing technologies and geographic information systems(GIS)have emerged as essential tools for geospatial analysis.The application of remote sensing and GIS for the detection of natural disasters was examined through a review of academic papers,offering an analysis of how remote sensing is utilized to assess natural hazards and their link to climate change.
文摘With the increasing global population and mounting pressures on agricultural production,precise pest monitoring has become a critical factor in ensuring food security.Traditional monitoring methods,often inefficient,struggle to meet the demands of modern agriculture.Drone remote sensing technology,leveraging its high efficiency and flexibility,demonstrates significant potential in pest monitoring.Equipped with multispectral,hyperspectral,and thermal infrared sensors,drones can rapidly cover large agricultural fields,capturing high-resolution imagery and data to detect spectral variations in crops.This enables effective differentiation between healthy and infested plants,facilitating early pest identification and targeted control.This paper systematically reviews the current applications of drone remote sensing technology in pest monitoring by examining different sensor types and their use in monitoring major crop pests and diseases.It also discusses existing challenges,aiming to provide insights and references for future research.
基金supported by the Office of Naval Research(Grant Nos.N00014-16-1-2094 and N00014-24-1-2547)the Lawrence Livermore National Laboratory(Grant No.B622827)the National Science Foundation.Y.-S.J.acknowledges support from KRISS(Grant Nos.25011026 and 25011211).
文摘Acoustic detection has many applications across science and technology from medicine to imaging and communications.However,most acoustic sensors have a common limitation in that the detection must be near the acoustic source.Alternatively,laser interferometry with picometer-scale motional displacement detection can rapidly and precisely measure sound-induced minute vibrations on remote surfaces.Here,we demonstrate the feasibility of sound detection up to 100 kHz at remote sites with≈60 m optical path length via laser homodyne interferometry.Based on our ultrastable hertz linewidth laser with 10-15 fractional stability,our laser interferometer achieves 0.5 pm/Hz1/2 displacement sensitivity near 10 kHz,bounded only by laser frequency noise over 10 kHz.Between 140 Hz and 15 kHz,we achieve a homodyne acoustic sensing sensitivity of subnanometer/Pascal across our conversational frequency overtones.The minimal sound pressure detectable over 60 m optical path length is≈2 mPa,with dynamic ranges over 100 dB.With the demonstrated standoff picometric distance metrology,we successfully detected and reconstructed musical scores of normal conversational volumes with high fidelity.The acoustic detection via this precision laser interferometer could be applied to selective area sound sensing for remote acoustic metrology,optomechanical vibrational motion sensing,and ultrasensitive optical microphones at the laser frequency noise limits.
文摘Cardiac arrest(CA)is a major global public health challenge,and its high morbidity and low survival rate pose severe tests for emergency and critical care.Although modern CPR techniques significantly improve the immediate resuscitation success rate in CA patients,poor outcomes such as neurological impairment still significantly increase the long-term care burden and reduce the quality of survival.In recent years,the application of remote ischemic conditioning(RIC)has attracted much attention in the field of cardiac arrest through its unique myocardial-nerve dual protection mechanism against the heart.This paper summarizes the conceptual connotation,physiological mechanism,operation method,and its application progress in CA and explores the potential of this technology in the field of CA care in order to provide reference for the research and application of RIC in the field of emergency care.
文摘A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)multi-scale cross-attention feature fusion,and(3)a boundary-constrained decoder.This design overcomes CNN s limited receptive fields and ViT s quadratic complexity while efficiently capturing both local features and global dependencies.Evaluations on LoveDA and ISPRS Vaihingen datasets demonstrate superior segmentation accuracy and boundary preservation compared to existing approaches,with the dual-branch structure maintaining computational efficiency throughout the process.
基金funded by the National Key Research and Development Program of China(Grant No.2020YFA0608103)the National Science Foundation of China(Grant Nos.42265012 and 31770765).
文摘Enhancing the carbon sink of terrestrial ecosystems is an essential nature-based solution to mitigate global warming and achieve the target of carbon neutrality.Over recent decades,China has launched a series of long-running and large-scale ambitious forestation projects.However,there is still a lack of year-to-year evaluation on the effects of afforestation on carbon sequestration.Satellite remote sensing provides continuous observations of vegetation dynamics and land use and land cover change,is becoming a practical tool to evaluate the changes of vegetation productivity driven by afforestation.Here,a spatially-explicit analysis was conducted by combining Moderate Resolution Imaging Spectroradiometer(MODIS)land cover and three up-to-date remote sensing gross primary productivity(GPP)datasets of China.The results showed that the generated afforestation maps have similar spatial distribution with the national forest inventory data at the provincial level.The accumulative areas of afforestation were 3.02×10^(5)km^(2)in China from 2002 to 2018,it was mainly distributed in Southwest(SW),South(Sou),Southeast(SE)and Northeast(NE)of China.Among them,SW possesses the largest afforestation sub-region,with an area of 9.38×10^(4)km^(2),accounting for 31.06%of the total.There were divergent trends of affores-tation area among different sub-regions.The southern sub-regions showed increasing trends,while the northern sub-regions showed decreasing trends.In keeping with these,the center of annual afforestation moved to the south after 2009.The southern sub-regions were the majority of the cumula-tive GPP,accounting for nearly 70%of the total.The GPP of new afforestation showed an increasing trend from 2002 to 2018,and the increasing rate was higher than existing forests.After afforestation,the GPP change of afforestation was higher than adjacent non-forest over the same period.Our work provides new evidence that afforestation of China has enhanced the carbon assimilation and will deepen our understanding of dynamics of carbon sequestration driven by afforestation.
文摘Remote sensing scene image classification is a prominent research area within remote sensing.Deep learningbased methods have been extensively utilized and have shown significant advancements in this field.Recent progress in these methods primarily focuses on enhancing feature representation capabilities to improve performance.The challenge lies in the limited spatial resolution of small-sized remote sensing images,as well as image blurring and sparse data.These factors contribute to lower accuracy in current deep learning models.Additionally,deeper networks with attention-based modules require a substantial number of network parameters,leading to high computational costs and memory usage.In this article,we introduce ERSNet,a lightweight novel attention-guided network for remote sensing scene image classification.ERSNet is constructed using a deep separable convolutional network and incorporates an attention mechanism.It utilizes spatial attention,channel attention,and channel self-attention to enhance feature representation and accuracy,while also reducing computational complexity and memory usage.Experimental results indicate that,compared to existing state-of-the-art methods,ERSNet has a significantly lower parameter count of only 1.2 M and reduced Flops.It achieves the highest classification accuracy of 99.14%on the EuroSAT dataset,demonstrating its suitability for application on mobile terminal devices.Furthermore,experimental results from the UCMerced land use dataset and the Brazilian coffee scene also confirm the strong generalization ability of this method.
基金Open access funding provided by University of Natural Resources and Life Sciences Vienna(BOKU).
文摘This paper presents a standardised workflow for conducting hazard assessments of mass wasting processes in remote mountain areas with limited data.The methodology integrates geomorphological mapping and remote sensing techniques and is adaptable to different national standards,thus ensuring its applicability in a variety of contexts.The principal objective is to guarantee the safety of mountainous regions,particularly in the vicinity of essential infrastructure,where the scope for implementing structural measures is restricted.The framework commences with comprehensive geomorphological mapping,which facilitates the identification of past hazardous processes and potential future hazards.New technologies,such as uncrewed aerial vehicles(UAVs),are employed to create high-resolution DEMs,which are particularly beneficial in regions with limited data availability.These models facilitate the assessment of potential hazards and inform decisions regarding protective measures.The utilisation of UAVs enhances the accuracy and efficiency of data collection,particularly in remote mountainous regions where alternative remotely sensed information may be unavailable.The integration of modern approaches into traditional hazard assessment methods allows for a comprehensive analysis of the spatial distribution of factors driving mass wasting processes.This workflow provides valuable insights that assist in the prioritisation of interventions and the optimisation of risk reduction in high mountainous areas.
文摘This article focuses on the remote diagnosis and analysis of rail vehicle status based on the data of the Train Control Management System(TCMS).It first expounds on the importance of train diagnostic analysis and designs a unified TCMS data frame transmission format.Subsequently,a remote data transmission link using 4G signals and data processing methods is introduced.The advantages of remote diagnosis are analyzed,and common methods such as correlation analysis,fault diagnosis,and fault prediction are explained in detail.Then,challenges such as data security and the balance between diagnostic accuracy and real-time performance are discussed,along with development prospects in technological innovation,algorithm optimization,and application promotion.This research provides ideas for remote analysis and diagnosis based on TCMS data,contributing to the safe and efficient operation of rail vehicles.