Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ ...Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions.展开更多
The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
Ag3PO4/Ag/Ag2Mo2O7 composite photocatalyst was successfully prepared via an in situ precipitation method. The as-prepared Ag3PO4/Ag/Ag2Mo2O7 nanocomposite included Ag3PO4 nanoparticles (NPs) as well as Ag NPs assemb...Ag3PO4/Ag/Ag2Mo2O7 composite photocatalyst was successfully prepared via an in situ precipitation method. The as-prepared Ag3PO4/Ag/Ag2Mo2O7 nanocomposite included Ag3PO4 nanoparticles (NPs) as well as Ag NPs assembling on the surface of Ag2Mo2O7 nanowires. Under visible light irradiation (λ〉420 nm), the Ag3PO4/Ag/Ag2Mo2O7 com- posite degraded rhodamine B (Rh B) efficiently and showed much higher photocatalytic efficiency than pure AgaPO4, Ag2Mo2O7, or Ag3PO4/Ag2Mo2O7. It was elucidated that the excellent photocatalytic performance of Ag3PO4/Ag/Ag2Mo2O7 for the degradation of Rh B under visible light could be ascribed to the high specific surface area, the extended absorption in the visible light region resulting from the Ag3PO4/Ag loading, and the effi- cient separation of photogenerated electrons and holes through the ternary heterostrucure composed of Ag3PO4, Ag and Ag2Mo2O7.展开更多
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
文摘Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions.
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
基金supported by the National Natural Science Foundation of China(No.21407059,No.21576112,No.21407064,and No.21607051)the Science Development Project of Jiangsu Province(BK20140527)+1 种基金the Science and Technology Research Project of the Department of Education of Jilin Province(No.2015220)the Open Subject of the State Key Laboratory of Rare Earth Resource Utilization(RERU2017011)
文摘Ag3PO4/Ag/Ag2Mo2O7 composite photocatalyst was successfully prepared via an in situ precipitation method. The as-prepared Ag3PO4/Ag/Ag2Mo2O7 nanocomposite included Ag3PO4 nanoparticles (NPs) as well as Ag NPs assembling on the surface of Ag2Mo2O7 nanowires. Under visible light irradiation (λ〉420 nm), the Ag3PO4/Ag/Ag2Mo2O7 com- posite degraded rhodamine B (Rh B) efficiently and showed much higher photocatalytic efficiency than pure AgaPO4, Ag2Mo2O7, or Ag3PO4/Ag2Mo2O7. It was elucidated that the excellent photocatalytic performance of Ag3PO4/Ag/Ag2Mo2O7 for the degradation of Rh B under visible light could be ascribed to the high specific surface area, the extended absorption in the visible light region resulting from the Ag3PO4/Ag loading, and the effi- cient separation of photogenerated electrons and holes through the ternary heterostrucure composed of Ag3PO4, Ag and Ag2Mo2O7.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.