For an effective thermoplastic pavement marking replacement strategy, the rate at which the marking’s retro-reflectivity deteriorates in service must be well established in order to avoid re-stripping that is too soo...For an effective thermoplastic pavement marking replacement strategy, the rate at which the marking’s retro-reflectivity deteriorates in service must be well established in order to avoid re-stripping that is too soon or too late. Against this background, this paper undertook a review of models that deal with degradation of thermoplastic pavement markings under different traffic and environmental conditions in order to establish service life and the terminal retro-reflectivity levels that have informed re-striping. Service life in the context of this paper is the time taken for a newly-installed marking to degrade to some minimum retro-reflectivity level below which motorists would find it difficult to navigate on the carriageway under night-time and poor visibility conditions. It was established that the minimum retro-reflectivity requiring re-stripping intervention reported varied, although commonly-adopted values tended to range from 50 mcd/m2/lx to 150 mcd/m2/lx. A number of empirical models, based on site specific conditions, have been developed by researchers using field data, to estimate marking retro-reflectivity at any time since placement. Whereas some of the models used time as the only independent variable, others used a combination of time, traffic level and a few other parameters to estimate retro-reflectivity. Even though degradation of marking retro-reflectivity is a reflection, among other things of material degeneration impacted by environmental and service conditions, almost all the models reviewed failed to consider environmental factors. Additionally, for some of the models, non-inclusion of the initial retro-reflectivity level and their generally low coefficient of determination statistic erode the confidence in their reliability.展开更多
Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper estab...Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine; in addition to an increasing price index, the slope cover height can be reduced; and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.展开更多
文摘For an effective thermoplastic pavement marking replacement strategy, the rate at which the marking’s retro-reflectivity deteriorates in service must be well established in order to avoid re-stripping that is too soon or too late. Against this background, this paper undertook a review of models that deal with degradation of thermoplastic pavement markings under different traffic and environmental conditions in order to establish service life and the terminal retro-reflectivity levels that have informed re-striping. Service life in the context of this paper is the time taken for a newly-installed marking to degrade to some minimum retro-reflectivity level below which motorists would find it difficult to navigate on the carriageway under night-time and poor visibility conditions. It was established that the minimum retro-reflectivity requiring re-stripping intervention reported varied, although commonly-adopted values tended to range from 50 mcd/m2/lx to 150 mcd/m2/lx. A number of empirical models, based on site specific conditions, have been developed by researchers using field data, to estimate marking retro-reflectivity at any time since placement. Whereas some of the models used time as the only independent variable, others used a combination of time, traffic level and a few other parameters to estimate retro-reflectivity. Even though degradation of marking retro-reflectivity is a reflection, among other things of material degeneration impacted by environmental and service conditions, almost all the models reviewed failed to consider environmental factors. Additionally, for some of the models, non-inclusion of the initial retro-reflectivity level and their generally low coefficient of determination statistic erode the confidence in their reliability.
基金the key project of the National Natural Science Foundation of China (No. 51034005)the Research Fund for the Doctoral Program of Higher Education of China(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science and Technology Support of China(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Leaving ditches between adjacent mining areas can effectively reduce re-stripping in the latter mining area and simultaneously lead to an increment in internal dumping costs in the former mining area. This paper establishes calculation models for these two marginal costs. The optimizing model for slope cover height can be determined by including marginal cost models in the objective function. The paper has two main contributions:(a) it fully considers redistribution of dumping space in the model;(b) it introduces price fluctuations and cash discounts in the model. We use the typical open-pit mine as an example to test and prove the model. We conclude that a completely covered slope is reasonable in Haerwusu open pit mine; in addition to an increasing price index, the slope cover height can be reduced; and that price changes are one of the most important influencing factors of slope cover height optimization in an open-pit mine.