Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement.In the past few decades, several methods have been used to measure atomic density, such as thermionic ef...Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement.In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of^87 Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of87 Rb atomic density is given.展开更多
A Bose-Einstein condensate (BEC) is a topic of significant interest within the scientific community. It is well understood that Rb-87 and Yb2Si2O7 have been utilized in experiments to explore this phenomenon. These st...A Bose-Einstein condensate (BEC) is a topic of significant interest within the scientific community. It is well understood that Rb-87 and Yb2Si2O7 have been utilized in experiments to explore this phenomenon. These studies have demonstrated that these materials can achieve the BEC phase, a state that has been experimentally validated. In this paper, we further establish, from the perspective of theoretical physics, that silicon is also capable of exhibiting BEC properties. Our approach differs from prior studies in that it uses innovatively certain boundary conditions. Specifically, we employed Yb-70 as a gamma-ray radiation source and a 1 nm linewidth (as the half-width of a 2 nm line). Additionally, we utilized the concept of half-value thickness from nuclear physics absorption models to optimize the semiconductor process. This method effectively removes ytterbium (Yb) during the process, leaving only silicon, silicon-based materials, or silicon topological superconductors on the wafer. This technical procedure results in the creation of “BEC silicon” at absolute zero temperature (0 K), introducing a novel material for BEC realization.展开更多
基金Project supported by the Natural Science Foundation of China(Grant Nos.11274118 and 11474095)the Innovation Program of Shanghai Municipal Education Commission of China(Grant No.13ZZ036)the Fundamental Research Funds for the Central Universities of China
文摘Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement.In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of^87 Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of87 Rb atomic density is given.
文摘A Bose-Einstein condensate (BEC) is a topic of significant interest within the scientific community. It is well understood that Rb-87 and Yb2Si2O7 have been utilized in experiments to explore this phenomenon. These studies have demonstrated that these materials can achieve the BEC phase, a state that has been experimentally validated. In this paper, we further establish, from the perspective of theoretical physics, that silicon is also capable of exhibiting BEC properties. Our approach differs from prior studies in that it uses innovatively certain boundary conditions. Specifically, we employed Yb-70 as a gamma-ray radiation source and a 1 nm linewidth (as the half-width of a 2 nm line). Additionally, we utilized the concept of half-value thickness from nuclear physics absorption models to optimize the semiconductor process. This method effectively removes ytterbium (Yb) during the process, leaving only silicon, silicon-based materials, or silicon topological superconductors on the wafer. This technical procedure results in the creation of “BEC silicon” at absolute zero temperature (0 K), introducing a novel material for BEC realization.