Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in ...Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.展开更多
Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly diffic...Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable...Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.展开更多
Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of c...Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.展开更多
Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance p...Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultras...Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not.展开更多
The non-destructive testing(NDT)of debonding in stainless steel composites plate(SSCP)is performed by infrared thermography,finite element analysis(FEA)software ANSYS is taken as the simulative tool,and 2D simulative ...The non-destructive testing(NDT)of debonding in stainless steel composites plate(SSCP)is performed by infrared thermography,finite element analysis(FEA)software ANSYS is taken as the simulative tool,and 2D simulative model has been set up to investigate effect of the thickness of coating and/or substrate on the detectibility of debonging in SSCPs.Two parameters,namely the maximum defect temperature difference and defect appearing index,are defined to evaluate the detectivity of defects,and their computational methods and formulas are given respectively.The preliminary changing tendency of the maximum defect temperature difference and defect appearing index with the thickness of coating and/or substrate is found by numerical simulation.展开更多
In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, T...In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.展开更多
Bridges are important elements in road system and can influence the entire economy of cities and region. Usually, these structures have high financial investments for their constructions, in this way, maintenance and ...Bridges are important elements in road system and can influence the entire economy of cities and region. Usually, these structures have high financial investments for their constructions, in this way, maintenance and conservation become so important. Inspection is a technical activity that covers several operations, including performance analysis; examination; final performance report, other operations may be necessary, such as maintenance work, recovery, strengthening and rehabilitation. Technical examination together with some test methods allows a critical and parametric judgment of the bridge performance by minimizing the subjectivity of visual evaluations, and permits a more detailed diagnosis. This paper discusses the methodology to perform tests to complement the assessment recommended by DNIT (Brazilian National Department of Transport Infrastructure), which consists only on a visual judgment. This approach provides technical basis to classify the bridges as its need and urgency of maintenance.展开更多
Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality thr...Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.展开更多
An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex electromagnetic induction is proved theoretically. An experimental technique for defining a location of a ...An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex electromagnetic induction is proved theoretically. An experimental technique for defining a location of a cross crack is offered.展开更多
Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection ...Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.展开更多
Engineering incidents caused by the quality of tunnel construction and geological diseases occur from time to time,which not only causes many problems in engineering geophysical prospecting,but also provided a broad s...Engineering incidents caused by the quality of tunnel construction and geological diseases occur from time to time,which not only causes many problems in engineering geophysical prospecting,but also provided a broad space for the application and development of engineering geophysical prospecting technology.Non-destructive testing technology has made great progress.Combining the diagnosis and treatment of tunnel diseases,the ground penetrating radar non-destructive detection technology is discussed.展开更多
In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in...In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in recent years.As a result,how to achieve efficient testing and effective control of the quality of water conservancy projects has always been a topic of discussion in the field of water conservancy engineering in our country.This paper summarizes the application of non-destructive testing technology in the quality testing and control of water conservancy projects.On the basis of explaining the connotation and application advantages of non-destructive testing technology,the non-destructive testing application strategies for concrete strength,steel corrosion and shallow cracks in water conservancy projects were studied.展开更多
Food safety is one of the major concerns in every country regardless of the economic and social development. The frequent occurrence of food scandals in the world has led the Chinese government to implement several st...Food safety is one of the major concerns in every country regardless of the economic and social development. The frequent occurrence of food scandals in the world has led the Chinese government to implement several strategies to fortify the food supply system to a high food safety standard. This relies heavily on laboratory testing services but conventional methods for detection of food contaminants and toxicants are limited by sophisticated sample preparation procedures, long analysis time, large instruments and professional personnel to meet the increasing demands. In this review, we have incorporated most of the current and potential rapid detection methods for many notorious food contaminants and toxicants including microbial agents, toxic ions, pesticides, veterinary drugs and preservatives, as well as detection of genetically modified food genes and adulterated edible oil. Development of rapid, accurate, easy-to-use and affordable testing methods could urge food handlers and the public to actively screen for food contaminants and toxicants instead of passively relying on monitoring by the government examination facility. This review also provides several recommendations including how to encourage the public to engage in the food safety management system and provide optimal education and financial assistance that may improve the current Chinese food safety control system.展开更多
Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improveme...Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.展开更多
基金National Natural Science Foundation of China(No.61201412)Ntural Science Foundation of Shanxi Province(No.2012021011-5)
文摘Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.
基金funded by the National Natural Science Foundation of China(Nos.52474165 and 52522404)。
文摘Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this researchsupported by EPSRC grant EP/R002495/1the European Metrology Research Programme through grant 17IND08。
文摘Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.
基金National Key Research and Development Project of China(No.2018YFB1701200)。
文摘Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.
文摘Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
基金Funded by National Natural Science Foundation of China(Nos.51878350,11832013,52078250)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0236)。
文摘Basic magnesium sulfate cement coral aggregate concrete(MCAC)is a new type of concrete consisting of basic magnesium sulfate cement,coarse coral aggregate,coral reef sand and seawater.The rebound hammer(RH),the ultrasonic pulse velocity(UPV)and the compressive strength(fcu)tests of 14 sets of cube specimens of the MCAC after 28 d of aging were conducted.The impact of the content and length of sisal fiber on the relationship between the fcu-RH and the fcu-UPV was determined.A mathematical model was established to predict the strength of the MCAC using the UPV,RH,and comprehensive UPV/RH methods and to obtain the curves of test strength.The applicability of the test strength curves of ordinary portland concrete(OPC),light-weight aggregate concrete(LAC),and coral aggregate concrete(CAC)to MCAC was assessed.The results showed that the test strength curves of OPC,LAC and CAC were inappropriate to determine the strength of MCAC using non-destructive method.The relative standard error of the curves of test strength of the RH method and the comprehensive method met the specifications,whereas that of the UPV method did not.
基金the National Natural Science Foundation of China(No.51075388)the Fundamental Research Funds for the Central Universities (No.2009KJ05)
文摘The non-destructive testing(NDT)of debonding in stainless steel composites plate(SSCP)is performed by infrared thermography,finite element analysis(FEA)software ANSYS is taken as the simulative tool,and 2D simulative model has been set up to investigate effect of the thickness of coating and/or substrate on the detectibility of debonging in SSCPs.Two parameters,namely the maximum defect temperature difference and defect appearing index,are defined to evaluate the detectivity of defects,and their computational methods and formulas are given respectively.The preliminary changing tendency of the maximum defect temperature difference and defect appearing index with the thickness of coating and/or substrate is found by numerical simulation.
文摘In this paper, an optical fiber sensor is designed by using optical Faraday effect. It is composed of fiber collimator, polarizer, magneto-optical crystal and mirror. Based on the magnetic flux leakage (MFL) theory, The optical fiber sensor was placed between two permanent magnets with the N-pole. Therefore, the optical fiber sensing system was built to detect the defective ferromagnetic objects. Theoretical and experimental studies shown that the system can identify a little defects, such as irons’ blind hole (diameter φ =?3mm , depth t = 4mm?), irons’ grooves (length l= 30mm , width?ω = 10mm ), hole (φ?=?3mm ) and crackle etc. The system has the characteristics of small size, high sensitivity, fast signal response and high resolution. In terms of the defective oil and gas pipelines detection, The optical fiber sensing system is used in non-destructive testing, which will be valuable and meaningful.
文摘Bridges are important elements in road system and can influence the entire economy of cities and region. Usually, these structures have high financial investments for their constructions, in this way, maintenance and conservation become so important. Inspection is a technical activity that covers several operations, including performance analysis; examination; final performance report, other operations may be necessary, such as maintenance work, recovery, strengthening and rehabilitation. Technical examination together with some test methods allows a critical and parametric judgment of the bridge performance by minimizing the subjectivity of visual evaluations, and permits a more detailed diagnosis. This paper discusses the methodology to perform tests to complement the assessment recommended by DNIT (Brazilian National Department of Transport Infrastructure), which consists only on a visual judgment. This approach provides technical basis to classify the bridges as its need and urgency of maintenance.
文摘Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.
文摘An essentially new method for non-destructive testing of elastic electrically conductive rods using non-vortex electromagnetic induction is proved theoretically. An experimental technique for defining a location of a cross crack is offered.
文摘Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.
文摘Engineering incidents caused by the quality of tunnel construction and geological diseases occur from time to time,which not only causes many problems in engineering geophysical prospecting,but also provided a broad space for the application and development of engineering geophysical prospecting technology.Non-destructive testing technology has made great progress.Combining the diagnosis and treatment of tunnel diseases,the ground penetrating radar non-destructive detection technology is discussed.
文摘In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in recent years.As a result,how to achieve efficient testing and effective control of the quality of water conservancy projects has always been a topic of discussion in the field of water conservancy engineering in our country.This paper summarizes the application of non-destructive testing technology in the quality testing and control of water conservancy projects.On the basis of explaining the connotation and application advantages of non-destructive testing technology,the non-destructive testing application strategies for concrete strength,steel corrosion and shallow cracks in water conservancy projects were studied.
文摘Food safety is one of the major concerns in every country regardless of the economic and social development. The frequent occurrence of food scandals in the world has led the Chinese government to implement several strategies to fortify the food supply system to a high food safety standard. This relies heavily on laboratory testing services but conventional methods for detection of food contaminants and toxicants are limited by sophisticated sample preparation procedures, long analysis time, large instruments and professional personnel to meet the increasing demands. In this review, we have incorporated most of the current and potential rapid detection methods for many notorious food contaminants and toxicants including microbial agents, toxic ions, pesticides, veterinary drugs and preservatives, as well as detection of genetically modified food genes and adulterated edible oil. Development of rapid, accurate, easy-to-use and affordable testing methods could urge food handlers and the public to actively screen for food contaminants and toxicants instead of passively relying on monitoring by the government examination facility. This review also provides several recommendations including how to encourage the public to engage in the food safety management system and provide optimal education and financial assistance that may improve the current Chinese food safety control system.
基金Projects(RG148/12AET,RG086/10AET) supported by the UMRG,MalaysiaProject(PS05812010B) supported by the Post Graduate Research Fund,Malaysia
文摘Ground improvement has been used on many construction sites to densify granular materials, in other word, to improve soil properties and reduce potential settlement. This work presents a case study of ground improvement using rapid impact compaction (RIC). The research site comprises the construction of workshop and depots as part of railway development project at Batu Gajah-Ipoh, Malaysia. In-situ testing results show that the subsurface soil comprises mainly of sand and silty sand through the investigated depth extended to 10 m. Groundwater is approximately 0.5 m below the ground surface. Evaluation of improvement was based on the results of pre- and post-improvement cone penetration test (CPT). Interpretation software has been used to infer soil properties. Load test was conducted to estimate soil settlement. It is found that the technique succeeds in improving soil properties namely the relative density increases from 45% to 70%, the friction angle of soil is increased by an average of 3°, and the soil settlement is reduced by 50%: The technique succeeds in improving soil properties to approximately 5.0 m in depth depending on soil uniformity with depth.