The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac...The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.展开更多
Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for glo...Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.展开更多
We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.C...We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1).展开更多
Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for...Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.展开更多
Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cance...Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.展开更多
Silver ion(Ag^(+))is a highly toxic metal ion,and its monitoring in water or food resources has become extraordinarily necessary within the scope of human health.In the light of the fact of Ag^(+)-induced folding stru...Silver ion(Ag^(+))is a highly toxic metal ion,and its monitoring in water or food resources has become extraordinarily necessary within the scope of human health.In the light of the fact of Ag^(+)-induced folding structure of specific peptides,an unlabeled and highselectivity Ag^(+)assay is presented by means of intrinsic fluorescence of peptides.Under the quenching effect of gold nanoparticles(AuNPs),characteristic fluorescence of peptides could be considerably reduced by rapid modification.Along with the Ag adding,the fluorescence signals of peptide-AuNPs are largely enhanced by the behavior between peptides and Agt.This is basically involving the formation of 4-coordinated complexes,generating the changes of peptides in structure and fluorescence properties.Under this circumstance,the adverse influence of plenty of interfering ions is suppressed,including the toxic Hg^(2+),Pb^(2+).The results highlight that Ag ions could be selectively recognized as low as 2.4 nmol/L with a linear range of 5 to 800 nmol/L.In comparison with other programs,the given approach declares simplicity,sensitivity,and superior selectivity.Furthermore,the biosensor excels in the practical application in water samples(e.g.,lake,tap and drinking water)owing to its non-interference and on-site rapid determination.展开更多
Fluorescence-based corrosion detection is an emerging method for surveillance in the early stages of metal corrosion.It is valued for its great responsiveness,non-invasive nature,and capability of in-situ and simultan...Fluorescence-based corrosion detection is an emerging method for surveillance in the early stages of metal corrosion.It is valued for its great responsiveness,non-invasive nature,and capability of in-situ and simultaneous detection.This review paper presents a thorough and up-to-date review of fluorescencebased methods for detecting metal corrosion.It introduces the underlying principles of these detection methods,aligned with the corrosion processes of metals.The paper categorizes fluorescent indicators into those sensitive to pH changes and those responsive to metal ions,both serving as early indicators of corrosion.It also discusses the factors influencing the sensitivity of fluorescence detection and various methods of incorporating fluorescent indicators.Lastly,the paper outlines critical future directions for the betterment of fluorescence-based corrosion diagnosis.展开更多
The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-...The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.展开更多
The advancement of various types of fluorescent nanoparticles is crucial for enhancing the application of lateral flow immunoassays(LFIA)across multiple fields.Currently,the fluorescent nanoparticles utilized in LFIA ...The advancement of various types of fluorescent nanoparticles is crucial for enhancing the application of lateral flow immunoassays(LFIA)across multiple fields.Currently,the fluorescent nanoparticles utilized in LFIA predominantly consist of traditional dye-doped nanoparticles or aggregation-induced luminescence dye-doped nanoparticles.The reliance on specific types of nanoparticles limits the diversity of signal reporting groups available for LFIA.Herein,we developed a solid-state luminescent dye-doped nanoparticles(SLDNPs)-based LFIA system with exceptional stability for the detection of C-reactive protein(CRP)in serum.The synthesis of SLD_(520)NP_(S)was simplicity,efficient and eco-friendly,which was ideal for large-scale production of the LFIA test strip.And the SLD_(520)NP_(S)exhibits superior fluorescence quantum yield(49%),fully guarantees the performance of the LFIA test strip.The constructed SLD_(520)NPsm Ab1-based LFIA demonstrated a satisfactory linear relationship with CRP concentrations ranging from 0.5 ng/mL to 100 ng/mL,with limits of detection(LOD)of 0.78 ng/mL and a visible LOD of 1 ng/mL using a handheld 405 nm lamp.Furthermore,the developed LFIA exhibited excellent recoveries in serum,ranging from 94.45%to 102.5%.Overall,the outstanding performance of the SLD_(520)NPs-mAb1-based LFIA indicates that solid-state luminescent dyes have significant potential applications in the field of LFIA.展开更多
A 12-metal Zn(Ⅱ)-Nd(Ⅲ) cluster 1(sizes:1.8 nm×2.0 nm×2.0 nm) was synthesized from a long-chain type Schiff base ligand.It displays ratiometric fluorescence response to neopterin(Neo) with high selectivity ...A 12-metal Zn(Ⅱ)-Nd(Ⅲ) cluster 1(sizes:1.8 nm×2.0 nm×2.0 nm) was synthesized from a long-chain type Schiff base ligand.It displays ratiometric fluorescence response to neopterin(Neo) with high selectivity and sensitivity,which can be expressed by the equation I_(545)_(nm)/I_(1060)_(nm)=A·[Neo]^(2)+B·[Neo]+C.1 is used to quantitatively test Neo concentrations in fetal calf serum(FCS) and urine,and the recovery ranges are 98.57%-103.82% and 99.25%-103.50%,respectively,while the relative standard deviations(RSDs) are 7.89%-9.46% and 1.85%-4.16%,respectively.The limits of detection of 1 to Neo in FCS and urine are 0.034 and 0.021 μmol/L,respectively.展开更多
The abnormal metabolic activity of the tumor can increase the oxygen consumption in tumor cells,and the poor blood perfusion often happens in tumor regions as well,which are the main reasons that result in a hypoxic s...The abnormal metabolic activity of the tumor can increase the oxygen consumption in tumor cells,and the poor blood perfusion often happens in tumor regions as well,which are the main reasons that result in a hypoxic situation in the tumor.A fluorescence probe,AQD,with selective response toward hypoxia was designed for the detection of hypoxic tumor cells,which was obtained by the covalent connection of a large planar conjugated fluorophore with good fluorescence stability and a N,N-dimethylaniline moiety via the azo bond.The introduction of the azo bond in AQD caused significant fluorescence emission quenching,and the probe was reduced under hypoxic conditions to release the fluorophore via breaking the azo bond,resulting in the gradual recovery of fluorescence emission.Probe AQD exhibited a remarkable fluorescence response in hypoxic conditions,high selectivity,and good biocompatibility,which was successfully used for the imaging of hypoxic tumor cells and realized the detection of hypoxic A549 cells.展开更多
The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their prac...The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their practical applications.Herein,the fluorescent nanofiber chitosan-1 was prepared through the modification of chitosan with 1,8-naphthalimide as fluorophore and piperazine as the detection segment.The high specific surface of fluorescent nanofiber chitosan-1 showed ultrasensitive and selective detection of diethyl chlorophosphate(DCP)in solution and vapor.The satisfied linear relationship between the fluorescent intensity and the concentration of DCP ranging from 0μmol/L to 100μmol/L was obtained.The limitation of detection was measured as low as 2.2 nmol/L within 30 s.The sensing mechanism was explored through the photoinduced electron transfer(PET)mechanism which was confirmed by ^(1)H,^(31)P NMR,and mass spectra(MS).The ultrasensitive detection of nanofibers may provide valuable insights for enhancing the sensing performance in visually detecting chemical nerve agents.展开更多
Developing an accurate and visual sensing strategy for trace levels of fluoroquinolone residues that pose threat to food safety and human health is highly desired but remains challenging.Herein,a target selfcalibratio...Developing an accurate and visual sensing strategy for trace levels of fluoroquinolone residues that pose threat to food safety and human health is highly desired but remains challenging.Herein,a target selfcalibration ratiometric fluorescent sensing platform has been designed for sensitive visual detection of levofloxacin(LEV)based on fluorescent europium metal-organic framework(Eu-MOF)probe.Specifically,the Eu-MOF was facilely synthesized via directly mixing Eu^(3+)with 1,10-phenanthroline-2,9-dicarboxylic acid(PDA)ligand at room temperature,which exhibited well-stable red fluorescence at 612 nm.Upon the addition of target LEV,the significant fluorescence quenching from Eu^(3+)was observed owing to the inner filter effect between the Eu-MOF and LEV.While the intrinsic fluorescence for LEV at 462nm was gradually enhanced,thereby realizing the self-calibration ratiometric fluorescence responses to LEV.Through this strategy,LEV can be detected down to 27 nmol/L.Furthermore,a test paper-based Eu-MOF integrated with the smartphone assisted RGB color analysis was exploited for the quantitative monitoring of LEV through the multi-color changes from red to blue,thus achieved portable,convenient and visual detection of LEV in honey and milk samples.Therefore,the developed strategy could provide a useful tool for supporting the practical on-site test in food samples.展开更多
Owing to the serious potential side-effects on the environment and human health,the rapid detection and removal of antibiotics have become an important research focus.In this work,four zinc-based metal-organic framewo...Owing to the serious potential side-effects on the environment and human health,the rapid detection and removal of antibiotics have become an important research focus.In this work,four zinc-based metal-organic frameworks(MOFs)with different functional groups,i.e.,Zn-MOF,Zn-MOF-CH_(3),Zn-MOF-NO_(2),Zn-MOF-COOH,were utilized for the construction of LDO/MOF composite materials with a nickel-iron-cobalt-based layered double oxide,NiFeCo-LDO.The results showed that the LDO/MOF composites not only had high sensitivity in detecting sulfonamide and quinolone antibiotics,but also had an appreciable ability to adsorb them from wastewater.The maximum adsorption capacities of all the four types of LDO@Zn-MOFs to all antibiotics can at least reach 150 mg/g,and the limits of detection in relation to all four antibiotics were at least as low as 100μg/L.Our work suggested the dual-function extraction performance can be attributed to the synergistic effects between the LDO and the MOFs.Moreover,the strong ferromagnetism derived from the LDO provided great convenience for the separation and regeneration of the LDO/MOF composites.展开更多
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce...In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.展开更多
Amino acid neurotransmitters facilitate the transmission of nerve messages across the synapses and play essential roles in the control and regulation of a variety of functions in the central and peripheral nervous sys...Amino acid neurotransmitters facilitate the transmission of nerve messages across the synapses and play essential roles in the control and regulation of a variety of functions in the central and peripheral nervous system. In this study, we developed a sensitive and efficient method using high-performance liquid chromatography (HPLC) with fluorescence detection for the assay of five important amino acid n After derivatization with o-phthaldialdehyde (OPA), aspartate (Asp), glutamic acid (Glu), glycine (Gly), taurine (Tau) and ),-aminobutyric acid (GABA) were simultaneously detected in the presence of the internal standard homoserine (Hse). Precise separation of these five amino acids was achieved using isocratic elution within 24 min. Good linearity was found over the concentration range with correlation coefficients (r2) not less than 0.9998. The limit of detection (LOD) values were no more than 10 nmol/L. The intra- and inter-day reproducibility was adequate with the relative standard deviation (RSD) of 10.5% or below. This method has also been applied to the analysis of amino acids in the substantia nigra and striatum samples obtained from C57BL/6 mice.展开更多
Abstract: In the presem study, we simultaneously quantified the levels of monoamine neurotransmitters (MANTs) and their metabolites (levodopa, norepinephrine, epinephrine, dopamine, 5-HT, 3,4-dihydroxyphenylacetic...Abstract: In the presem study, we simultaneously quantified the levels of monoamine neurotransmitters (MANTs) and their metabolites (levodopa, norepinephrine, epinephrine, dopamine, 5-HT, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid) in different brain subregions of rats using a newly developed simple, sensitive and selective high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method. In this new HPLC-FLD method, analytes were directly extracted and separated without deriveatization step within 20 min. The FLD wavelength was set at 280 nm and 330 nm for excitation and emission, respectively. The analytes were separated on an Agilent Eclipse Plus Cls column (4.6 mm×150 mm, 5.0 μm) equipped with an Agilent XDB-C18 security guard column (4.6 mm×12.5 mm, 5.0 lam), and the column temperature was maintained at 35 ℃. The mobile phase for elution was isocratic. The mobile phase consisted of citric acid buffer (50 mmol/L citric acid, 50 mmol/L sodium acetate, 0.5 mmol/L octane sulfonic acid sodium salt, 0.5 mmol/L Na2EDTA and 5 mmol/L triethylamine, pH 3.8) and methanol (90:10, v/v) at a flow rate of 1.0 mL/min. The detection limit (DL) was 0.9-23 nM for all the MANTs and their metabolites with a sample volume of 50 μL. The method was shown to be highly reproducible in terms of peak area (intraday, 0.08%-1.85% RSD, n = 5). The simultaneous measurement of these MANTs and their metabolites improved our understanding of the neurochemistry in the central nervous system (CNS) in relation to different addictive drugs (methamphetamine, heroin and their mixture) in drug-addicted rat models.展开更多
Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching a...Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.展开更多
Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quen...Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quently,composite fluorescent nanoparticles,chitosan-functionalized silica nanoparticles(CSNPs)-coated Cu NCs(Cu NCs/CSNPs),were synthesized via a reverse microemulsion method.Compared with Cu NCs,the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance.Based on the composite Cu NCs/CSNPs,a fluorescence method for the detection of cefixime fluorescence quenching was estab-lished.The technique was simple,sensitive,and selective for detecting cefixime.The fluorescence quenching effi-ciency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5µmol·L^(-1)(1.81-17.46 mg·L^(-1)),with a limit of detection of 0.0455µmol·L^(-1)(20.6µg·L^(-1)).展开更多
Aim To develop an HPLC method with fluorescence detection for the assay ofDL111-IT in rabbit plasma. Methods DL111-IT and internal standard glybenzcyclamide in rabbit plasmawere extracted with chloroform. The determin...Aim To develop an HPLC method with fluorescence detection for the assay ofDL111-IT in rabbit plasma. Methods DL111-IT and internal standard glybenzcyclamide in rabbit plasmawere extracted with chloroform. The determination was performed on a Diamonsil ODS-C_(18) column(150 mm x 4.6 mm, 5 μm) with a mobile phase of acetonitrile and 0.025 mol·L^(-1) diammoniumhydrogen phosphate buffer (pH 5.0, adjusted by phosphoric acid) (60:40, V/V) at a flow-rate of 1.0mL·min^(-1) . Fluorescence detector was operated at excitation wavelength of 250 nm and emissionwavelength of 332 nm. Results The calibration curve in plasma was linear from 1.00 - 20.00ng·mL^(-1) ( r = 0.999 6, n = 5). The method afforded average extracting recoveries of 85.3% ±1.3%, 84.9% ± 2.7% and 85.8% ± 1.8%, and the average method recoveries were 99.5% ±0.4%, 102.1%± 1.8% and 101.3% ± 2.4% for the high (20.00 ng·mL^(-1)) , middle (10.00 ng·mL^(-1)) and low (1.00 ng·mL^(-1)) check samples, respectively. The intra-day (n = 5) and inter-day (n = 5) precisions(RSD) were less than 3.0% and 7.0%, respectively. The limit of detection and quantitation for themethod were 0.3 ng·mL^(-1) (S/N = 3) and 1 ng·mL^(-1) (S/N = 10, RSD<7.0%) plasma sample,respectively. Conclusion The developed method was accurate, sensitive, simple and could be used forpharmacokinetic study of DL111- IT.展开更多
基金supported by the National Natural Science Foundation of China(No.U21A20290)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011656)+2 种基金the Projects of Talents Recruitment of GDUPT(No.2023rcyj1003)the 2022“Sail Plan”Project of Maoming Green Chemical Industry Research Institute(No.MMGCIRI2022YFJH-Y-024)Maoming Science and Technology Project(No.2023382).
文摘The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.
基金funded by the National Natural Science Foundation of China(Nos.22374055,22022404,22074050,82172055)the National Natural Science Foundation of Hubei Province(No.22022CFA033)the Fundamental Research Funds for the Central Universities(Nos.CCNU24JCPT001,CCNU24JCPT020)。
文摘Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.
基金supported by the National Natural Science Foundation of China (Grant No.22063010)the Natural Science Foundation of Shaanxi Province (Grant No.2022QFY07-05)Yan'an Science and Technology Plan Project (Grants No.2022SLJBZ-002, 2023-CYL-193)。
文摘We used the natural product chamomile as a carbon source to synthesize praseodymium(Pr) and nitrogen(N) co-doped biomass carbon dots(Pr/N-BCDs) with remarkable luminescence properties by one-step hydrothermal method.Compared with single N-doped BCDs(N-BCDs) and Pr-doped BCDs(Pr-BCDs),Pr/N-BCDs not only showed better fluorescence properties and stability but also achieved a significant increase in quantum yield of 12%.More importantly,under certain conditions,Pr/N-BCDs and 2,4-dinitrophenylhydrazide(2,4-DNPH) had significant fluorescence internal filtration effect(IFE) and dynamic quenching effect,and in the concentration range of0.50-20 μmol·L^(-1),the concentration of 2,4-DNPH had a good linear relationship with the fluorescence quenching signal,and the detection limit was as low as 2.1 nmol·L^(-1).
基金The Tertiary Education Scientific Research Project of the Guangzhou Municipal Education Bureau(2024312227)Innovative and Entrepreneurial Projects of Guangzhou University Students(202411078014)+2 种基金Guangzhou University Open Sharing Fund for Instruments and Equipment(2025)National Major Scientific Research Instrument Development Project(22227804)Sub-subject of the National Key Research Project(2023YFB3210100)。
文摘Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.
基金supported by Guangzhou Development Zone Science and Technology(2021GH10,2020GH10,2023GH02)the University of Macao(MYRG2022-00271-FST)The Science and Technology Development Fund(FDCT)of Macao(0032/2022/A).
文摘Introduction Early cancer detection represents a critical evolution in healthcare,addressing a significant pain point in cancer treatment:the tendency for diagnoses to occur at advanced stages.Traditionally,many cancers are not identified until they have progressed to late stages,where treatment options become limited,less effective,and more costly.This late detection results in poorer prognoses,higher mortality rates,and increased healthcare costs.Without early detection tools like Fluorescence In Situ Hybridization(FISH),these challenges persist,leaving patients with fewer opportunities for successful outcomes.
基金Supported by the National Natural Science Foundation of China(21775114,21874102)。
文摘Silver ion(Ag^(+))is a highly toxic metal ion,and its monitoring in water or food resources has become extraordinarily necessary within the scope of human health.In the light of the fact of Ag^(+)-induced folding structure of specific peptides,an unlabeled and highselectivity Ag^(+)assay is presented by means of intrinsic fluorescence of peptides.Under the quenching effect of gold nanoparticles(AuNPs),characteristic fluorescence of peptides could be considerably reduced by rapid modification.Along with the Ag adding,the fluorescence signals of peptide-AuNPs are largely enhanced by the behavior between peptides and Agt.This is basically involving the formation of 4-coordinated complexes,generating the changes of peptides in structure and fluorescence properties.Under this circumstance,the adverse influence of plenty of interfering ions is suppressed,including the toxic Hg^(2+),Pb^(2+).The results highlight that Ag ions could be selectively recognized as low as 2.4 nmol/L with a linear range of 5 to 800 nmol/L.In comparison with other programs,the given approach declares simplicity,sensitivity,and superior selectivity.Furthermore,the biosensor excels in the practical application in water samples(e.g.,lake,tap and drinking water)owing to its non-interference and on-site rapid determination.
基金financially supported by the National Natural Science Foundation of China(Nos.52171089 and 51571202)the Liaoning Province International Science and Technology Coopera-tion Program Project(No.2024JH2/101900013)+1 种基金the Key Program of Basic Research Projects of Liaoning Provincial Department of Edu-cation(No.JYTZD2023114)the LingChuang Research Project of China National Nuclear Corporation(No.E041F212Z1).
文摘Fluorescence-based corrosion detection is an emerging method for surveillance in the early stages of metal corrosion.It is valued for its great responsiveness,non-invasive nature,and capability of in-situ and simultaneous detection.This review paper presents a thorough and up-to-date review of fluorescencebased methods for detecting metal corrosion.It introduces the underlying principles of these detection methods,aligned with the corrosion processes of metals.The paper categorizes fluorescent indicators into those sensitive to pH changes and those responsive to metal ions,both serving as early indicators of corrosion.It also discusses the factors influencing the sensitivity of fluorescence detection and various methods of incorporating fluorescent indicators.Lastly,the paper outlines critical future directions for the betterment of fluorescence-based corrosion diagnosis.
基金supported by the National Natural Science Foundation of China(21663032 and 22061041)the Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)the National Innovation and Entrepreneurship Training Program for College Students of China(S202110719044)。
文摘The SiO_(2) inverse opal photonic crystals(PC)with a three-dimensional macroporous structure were fabricated by the sacrificial template method,followed by infiltration of a pyrene derivative,1-(pyren-8-yl)but-3-en-1-amine(PEA),to achieve a formaldehyde(FA)-sensitive and fluorescence-enhanced sensing film.Utilizing the specific Aza-Cope rearrangement reaction of allylamine of PEA and FA to generate a strong fluorescent product emitted at approximately 480 nm,we chose a PC whose blue band edge of stopband overlapped with the fluorescence emission wavelength.In virtue of the fluorescence enhancement property derived from slow photon effect of PC,FA was detected highly selectively and sensitively.The limit of detection(LoD)was calculated to be 1.38 nmol/L.Furthermore,the fast detection of FA(within 1 min)is realized due to the interconnected three-dimensional macroporous structure of the inverse opal PC and its high specific surface area.The prepared sensing film can be used for the detection of FA in air,aquatic products and living cells.The very close FA content in indoor air to the result from FA detector,the recovery rate of 101.5%for detecting FA in aquatic products and fast fluorescence imaging in 2 min for living cells demonstrate the reliability and accuracy of our method in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.22064014,21765013)the Science and Technology Development Plan Project of Lanzhou(No.20211-146)+3 种基金the Science and Technology Project of Gansu Province(Nos.21YF5FA071,21JR7RA538)the Industrial Support Programme for Higher Education Institutions Project(Nos.2023CYZC-69,2024CYCZ-05)the 2023 Gansu Provincial Key Talent Project(No.2023RCXM26)a Gansu province postdoctoral grant(No.00247)。
文摘The advancement of various types of fluorescent nanoparticles is crucial for enhancing the application of lateral flow immunoassays(LFIA)across multiple fields.Currently,the fluorescent nanoparticles utilized in LFIA predominantly consist of traditional dye-doped nanoparticles or aggregation-induced luminescence dye-doped nanoparticles.The reliance on specific types of nanoparticles limits the diversity of signal reporting groups available for LFIA.Herein,we developed a solid-state luminescent dye-doped nanoparticles(SLDNPs)-based LFIA system with exceptional stability for the detection of C-reactive protein(CRP)in serum.The synthesis of SLD_(520)NP_(S)was simplicity,efficient and eco-friendly,which was ideal for large-scale production of the LFIA test strip.And the SLD_(520)NP_(S)exhibits superior fluorescence quantum yield(49%),fully guarantees the performance of the LFIA test strip.The constructed SLD_(520)NPsm Ab1-based LFIA demonstrated a satisfactory linear relationship with CRP concentrations ranging from 0.5 ng/mL to 100 ng/mL,with limits of detection(LOD)of 0.78 ng/mL and a visible LOD of 1 ng/mL using a handheld 405 nm lamp.Furthermore,the developed LFIA exhibited excellent recoveries in serum,ranging from 94.45%to 102.5%.Overall,the outstanding performance of the SLD_(520)NPs-mAb1-based LFIA indicates that solid-state luminescent dyes have significant potential applications in the field of LFIA.
基金Project supported by the National Natural Science Foundation of China (21771141)。
文摘A 12-metal Zn(Ⅱ)-Nd(Ⅲ) cluster 1(sizes:1.8 nm×2.0 nm×2.0 nm) was synthesized from a long-chain type Schiff base ligand.It displays ratiometric fluorescence response to neopterin(Neo) with high selectivity and sensitivity,which can be expressed by the equation I_(545)_(nm)/I_(1060)_(nm)=A·[Neo]^(2)+B·[Neo]+C.1 is used to quantitatively test Neo concentrations in fetal calf serum(FCS) and urine,and the recovery ranges are 98.57%-103.82% and 99.25%-103.50%,respectively,while the relative standard deviations(RSDs) are 7.89%-9.46% and 1.85%-4.16%,respectively.The limits of detection of 1 to Neo in FCS and urine are 0.034 and 0.021 μmol/L,respectively.
文摘The abnormal metabolic activity of the tumor can increase the oxygen consumption in tumor cells,and the poor blood perfusion often happens in tumor regions as well,which are the main reasons that result in a hypoxic situation in the tumor.A fluorescence probe,AQD,with selective response toward hypoxia was designed for the detection of hypoxic tumor cells,which was obtained by the covalent connection of a large planar conjugated fluorophore with good fluorescence stability and a N,N-dimethylaniline moiety via the azo bond.The introduction of the azo bond in AQD caused significant fluorescence emission quenching,and the probe was reduced under hypoxic conditions to release the fluorophore via breaking the azo bond,resulting in the gradual recovery of fluorescence emission.Probe AQD exhibited a remarkable fluorescence response in hypoxic conditions,high selectivity,and good biocompatibility,which was successfully used for the imaging of hypoxic tumor cells and realized the detection of hypoxic A549 cells.
基金financial support from the National Natural Science Foundation of China(Nos.82104065,32061143045,22276142,22474003)the National Key Research&Development Program(Nos.2019YFE0123100,2022YFE0199800)+2 种基金Anhui Provincial Natural Science Foundation(No.2208085MB38)Anhui Provincial Natural Science Foundation for Distinguished Young Scholars(No.2008085J11)Foundation of Education Department of Anhui Province(No.2022AH010023).
文摘The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their practical applications.Herein,the fluorescent nanofiber chitosan-1 was prepared through the modification of chitosan with 1,8-naphthalimide as fluorophore and piperazine as the detection segment.The high specific surface of fluorescent nanofiber chitosan-1 showed ultrasensitive and selective detection of diethyl chlorophosphate(DCP)in solution and vapor.The satisfied linear relationship between the fluorescent intensity and the concentration of DCP ranging from 0μmol/L to 100μmol/L was obtained.The limitation of detection was measured as low as 2.2 nmol/L within 30 s.The sensing mechanism was explored through the photoinduced electron transfer(PET)mechanism which was confirmed by ^(1)H,^(31)P NMR,and mass spectra(MS).The ultrasensitive detection of nanofibers may provide valuable insights for enhancing the sensing performance in visually detecting chemical nerve agents.
基金supported by the National Natural Science Foundation of China(Nos.32260247 and 22064010)the Natural Science Foundation of Jiangxi Province(Nos.20232BAB215071 and 20224BAB213009).
文摘Developing an accurate and visual sensing strategy for trace levels of fluoroquinolone residues that pose threat to food safety and human health is highly desired but remains challenging.Herein,a target selfcalibration ratiometric fluorescent sensing platform has been designed for sensitive visual detection of levofloxacin(LEV)based on fluorescent europium metal-organic framework(Eu-MOF)probe.Specifically,the Eu-MOF was facilely synthesized via directly mixing Eu^(3+)with 1,10-phenanthroline-2,9-dicarboxylic acid(PDA)ligand at room temperature,which exhibited well-stable red fluorescence at 612 nm.Upon the addition of target LEV,the significant fluorescence quenching from Eu^(3+)was observed owing to the inner filter effect between the Eu-MOF and LEV.While the intrinsic fluorescence for LEV at 462nm was gradually enhanced,thereby realizing the self-calibration ratiometric fluorescence responses to LEV.Through this strategy,LEV can be detected down to 27 nmol/L.Furthermore,a test paper-based Eu-MOF integrated with the smartphone assisted RGB color analysis was exploited for the quantitative monitoring of LEV through the multi-color changes from red to blue,thus achieved portable,convenient and visual detection of LEV in honey and milk samples.Therefore,the developed strategy could provide a useful tool for supporting the practical on-site test in food samples.
基金support from the National Natural Science Foundation of China(Nos.22276080,21605105)the Foreign Expert Project,China(No.G2022014096L)+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20211340)Graduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3835).
文摘Owing to the serious potential side-effects on the environment and human health,the rapid detection and removal of antibiotics have become an important research focus.In this work,four zinc-based metal-organic frameworks(MOFs)with different functional groups,i.e.,Zn-MOF,Zn-MOF-CH_(3),Zn-MOF-NO_(2),Zn-MOF-COOH,were utilized for the construction of LDO/MOF composite materials with a nickel-iron-cobalt-based layered double oxide,NiFeCo-LDO.The results showed that the LDO/MOF composites not only had high sensitivity in detecting sulfonamide and quinolone antibiotics,but also had an appreciable ability to adsorb them from wastewater.The maximum adsorption capacities of all the four types of LDO@Zn-MOFs to all antibiotics can at least reach 150 mg/g,and the limits of detection in relation to all four antibiotics were at least as low as 100μg/L.Our work suggested the dual-function extraction performance can be attributed to the synergistic effects between the LDO and the MOFs.Moreover,the strong ferromagnetism derived from the LDO provided great convenience for the separation and regeneration of the LDO/MOF composites.
基金financial support from the National Natural Science Foundation of China(Grant No.21801016)the Science and Technology on Applied Physical Chemistry Laboratory(Grant No.6142602220304)。
文摘In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.
文摘Amino acid neurotransmitters facilitate the transmission of nerve messages across the synapses and play essential roles in the control and regulation of a variety of functions in the central and peripheral nervous system. In this study, we developed a sensitive and efficient method using high-performance liquid chromatography (HPLC) with fluorescence detection for the assay of five important amino acid n After derivatization with o-phthaldialdehyde (OPA), aspartate (Asp), glutamic acid (Glu), glycine (Gly), taurine (Tau) and ),-aminobutyric acid (GABA) were simultaneously detected in the presence of the internal standard homoserine (Hse). Precise separation of these five amino acids was achieved using isocratic elution within 24 min. Good linearity was found over the concentration range with correlation coefficients (r2) not less than 0.9998. The limit of detection (LOD) values were no more than 10 nmol/L. The intra- and inter-day reproducibility was adequate with the relative standard deviation (RSD) of 10.5% or below. This method has also been applied to the analysis of amino acids in the substantia nigra and striatum samples obtained from C57BL/6 mice.
基金National Natural Science Foundation(Grant No.813 73372)the Open Foundation of State Key Laboratory of Natural and Biomimetic Drugs(Grant No.SKL2012004)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110001110021 and 20130001110059)
文摘Abstract: In the presem study, we simultaneously quantified the levels of monoamine neurotransmitters (MANTs) and their metabolites (levodopa, norepinephrine, epinephrine, dopamine, 5-HT, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid) in different brain subregions of rats using a newly developed simple, sensitive and selective high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method. In this new HPLC-FLD method, analytes were directly extracted and separated without deriveatization step within 20 min. The FLD wavelength was set at 280 nm and 330 nm for excitation and emission, respectively. The analytes were separated on an Agilent Eclipse Plus Cls column (4.6 mm×150 mm, 5.0 μm) equipped with an Agilent XDB-C18 security guard column (4.6 mm×12.5 mm, 5.0 lam), and the column temperature was maintained at 35 ℃. The mobile phase for elution was isocratic. The mobile phase consisted of citric acid buffer (50 mmol/L citric acid, 50 mmol/L sodium acetate, 0.5 mmol/L octane sulfonic acid sodium salt, 0.5 mmol/L Na2EDTA and 5 mmol/L triethylamine, pH 3.8) and methanol (90:10, v/v) at a flow rate of 1.0 mL/min. The detection limit (DL) was 0.9-23 nM for all the MANTs and their metabolites with a sample volume of 50 μL. The method was shown to be highly reproducible in terms of peak area (intraday, 0.08%-1.85% RSD, n = 5). The simultaneous measurement of these MANTs and their metabolites improved our understanding of the neurochemistry in the central nervous system (CNS) in relation to different addictive drugs (methamphetamine, heroin and their mixture) in drug-addicted rat models.
文摘Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.
文摘Herein,copper nanoclusters(Cu NCs)were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand,with Cu(NO_(3))_(2)as copper source.Subse-quently,composite fluorescent nanoparticles,chitosan-functionalized silica nanoparticles(CSNPs)-coated Cu NCs(Cu NCs/CSNPs),were synthesized via a reverse microemulsion method.Compared with Cu NCs,the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance.Based on the composite Cu NCs/CSNPs,a fluorescence method for the detection of cefixime fluorescence quenching was estab-lished.The technique was simple,sensitive,and selective for detecting cefixime.The fluorescence quenching effi-ciency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5µmol·L^(-1)(1.81-17.46 mg·L^(-1)),with a limit of detection of 0.0455µmol·L^(-1)(20.6µg·L^(-1)).
文摘Aim To develop an HPLC method with fluorescence detection for the assay ofDL111-IT in rabbit plasma. Methods DL111-IT and internal standard glybenzcyclamide in rabbit plasmawere extracted with chloroform. The determination was performed on a Diamonsil ODS-C_(18) column(150 mm x 4.6 mm, 5 μm) with a mobile phase of acetonitrile and 0.025 mol·L^(-1) diammoniumhydrogen phosphate buffer (pH 5.0, adjusted by phosphoric acid) (60:40, V/V) at a flow-rate of 1.0mL·min^(-1) . Fluorescence detector was operated at excitation wavelength of 250 nm and emissionwavelength of 332 nm. Results The calibration curve in plasma was linear from 1.00 - 20.00ng·mL^(-1) ( r = 0.999 6, n = 5). The method afforded average extracting recoveries of 85.3% ±1.3%, 84.9% ± 2.7% and 85.8% ± 1.8%, and the average method recoveries were 99.5% ±0.4%, 102.1%± 1.8% and 101.3% ± 2.4% for the high (20.00 ng·mL^(-1)) , middle (10.00 ng·mL^(-1)) and low (1.00 ng·mL^(-1)) check samples, respectively. The intra-day (n = 5) and inter-day (n = 5) precisions(RSD) were less than 3.0% and 7.0%, respectively. The limit of detection and quantitation for themethod were 0.3 ng·mL^(-1) (S/N = 3) and 1 ng·mL^(-1) (S/N = 10, RSD<7.0%) plasma sample,respectively. Conclusion The developed method was accurate, sensitive, simple and could be used forpharmacokinetic study of DL111- IT.