The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
Cloud computing is currently dominated within the space of highperformance distributed computing and it provides resource polling and ondemand services through the web.So,task scheduling problem becomes a very importa...Cloud computing is currently dominated within the space of highperformance distributed computing and it provides resource polling and ondemand services through the web.So,task scheduling problem becomes a very important analysis space within the field of a cloud computing environment as a result of user’s services demand modification dynamically.The main purpose of task scheduling is to assign tasks to available processors to produce minimum schedule length without violating precedence restrictions.In heterogeneous multiprocessor systems,task assignments and schedules have a significant impact on system operation.Within the heuristic-based task scheduling algorithm,the different processes will lead to a different task execution time(makespan)on a heterogeneous computing system.Thus,a good scheduling algorithm should be able to set precedence efficiently for every subtask depending on the resources required to reduce(makespan).In this paper,we propose a new efficient task scheduling algorithm in cloud computing systems based on RAO algorithm to solve an important task and schedule a heterogeneous multiple processing problem.The basic idea of this process is to exploit the advantages of heuristic-based algorithms to reduce space search and time to get the best solution.We evaluate our algorithm’s performance by applying it to three examples with a different number of tasks and processors.The experimental results show that the proposed approach significantly succeeded in finding the optimal solutions than others in terms of the time of task implementation.展开更多
Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the...Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation.This study proposes a discrete Rao-combined artificial bee colony(ABC)algorithm for planning inspection paths with minimum exposure doses in radioactive environments with obstacles.In this algorithm,retaining the framework of the traditional ABC algorithm,we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap sequence.To increase the randomness of solution generation,the chaos algorithm was used at the initialization stage.The K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm.For path planning in an environment with complex structural obstacles,an obstacle detour technique using a recursive algorithm was applied.To evaluate the performance of the proposed algorithm,we performed experimental simulations in three hypothetical environments and compared the results with those of improved particle swarm optimization,chaos particle swarm optimization,improved ant colony optimization,and discrete Rao’s algorithms.The experimental results show the high performance of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability.展开更多
现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定...现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。展开更多
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
文摘Cloud computing is currently dominated within the space of highperformance distributed computing and it provides resource polling and ondemand services through the web.So,task scheduling problem becomes a very important analysis space within the field of a cloud computing environment as a result of user’s services demand modification dynamically.The main purpose of task scheduling is to assign tasks to available processors to produce minimum schedule length without violating precedence restrictions.In heterogeneous multiprocessor systems,task assignments and schedules have a significant impact on system operation.Within the heuristic-based task scheduling algorithm,the different processes will lead to a different task execution time(makespan)on a heterogeneous computing system.Thus,a good scheduling algorithm should be able to set precedence efficiently for every subtask depending on the resources required to reduce(makespan).In this paper,we propose a new efficient task scheduling algorithm in cloud computing systems based on RAO algorithm to solve an important task and schedule a heterogeneous multiple processing problem.The basic idea of this process is to exploit the advantages of heuristic-based algorithms to reduce space search and time to get the best solution.We evaluate our algorithm’s performance by applying it to three examples with a different number of tasks and processors.The experimental results show that the proposed approach significantly succeeded in finding the optimal solutions than others in terms of the time of task implementation.
文摘Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation.This study proposes a discrete Rao-combined artificial bee colony(ABC)algorithm for planning inspection paths with minimum exposure doses in radioactive environments with obstacles.In this algorithm,retaining the framework of the traditional ABC algorithm,we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap sequence.To increase the randomness of solution generation,the chaos algorithm was used at the initialization stage.The K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm.For path planning in an environment with complex structural obstacles,an obstacle detour technique using a recursive algorithm was applied.To evaluate the performance of the proposed algorithm,we performed experimental simulations in three hypothetical environments and compared the results with those of improved particle swarm optimization,chaos particle swarm optimization,improved ant colony optimization,and discrete Rao’s algorithms.The experimental results show the high performance of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability.
文摘现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。