期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于排序式SVM的搜索自适应排序系统实现 被引量:6
1
作者 薛晓慧 芮光辉 +1 位作者 李炜东 袁培森 《计算机技术与发展》 2021年第10期203-208,214,共7页
随着社会信息化的程度不断提高,搜索引擎作为广泛使用的信息检索工具,用户对于搜索引擎智能化和个性化的需求不断提高,其中元搜索引擎由于能够整合多个独立型搜索引擎的结果而被广泛研究。为了解决当前元搜索引擎信息覆盖率不足和查准... 随着社会信息化的程度不断提高,搜索引擎作为广泛使用的信息检索工具,用户对于搜索引擎智能化和个性化的需求不断提高,其中元搜索引擎由于能够整合多个独立型搜索引擎的结果而被广泛研究。为了解决当前元搜索引擎信息覆盖率不足和查准率不高的问题,并为用户提供个性化和智能化的搜索结果,设计并实现了一个网页个性化搜索自适应排序系统。该系统基于元搜索引擎,针对中文语境,利用ICTCLAS中文分词方法和TF-IDF算法,选取若干常用独立型搜索引擎计算相似度并合并搜索结果,再基于Ranking SVM排序学习方法,对合并后的结果进行重排序得到个性化的搜索结果。利用Java和JSP实现上述系统并测试,实验结果表明该系统在中文语境下能对多个独立型搜索引擎的结果进行整合,能对整合结果进行个性化的重排序。 展开更多
关键词 信息检索 元搜索引擎 分词处理 关键字提取 ranking svm
在线阅读 下载PDF
Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics
2
作者 Emad Sami Jaha 《Computer Modeling in Engineering & Sciences》 2025年第9期3645-3678,共34页
The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models ... The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers. 展开更多
关键词 Ear recognition soft biometrics human identification human verification comparative labeling ranking svm deep features feature-level fusion convolutional neural networks(CNNs) deep learning
在线阅读 下载PDF
ORDINAL REGRESSION FOR INFORMATION RETRIEVAL 被引量:2
3
作者 Qi Haoliang Li Sheng +2 位作者 Gao Jianfeng Han Zhongyuan Xia Xinsong 《Journal of Electronics(China)》 2008年第1期120-124,共5页
This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression probl... This letter presents a new discriminative model for Information Retrieval (IR), referred to as Ordinal Regression Model (ORM). ORM is different from most existing models in that it views IR as ordinal regression problem (i.e. ranking problem) instead of binary classification. It is noted that the task of IR is to rank documents according to the user information needed, so IR can be viewed as ordinal regression problem. Two parameter learning algorithms for ORM are presented. One is a perceptron-based algorithm. The other is the ranking Support Vector Machine (SVM). The effec- tiveness of the proposed approach has been evaluated on the task of ad hoc retrieval using three English Text REtrieval Conference (TREC) sets and two Chinese TREC sets. Results show that ORM sig- nificantly outperforms the state-of-the-art language model approaches and OKAPI system in all test sets; and it is more appropriate to view IR as ordinal regression other than binary classification. 展开更多
关键词 Information Retrieval (IR) Ordinal Regression PERCEPTRON ranking Support Vector Machine svm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部