期刊文献+
共找到156篇文章
< 1 2 8 >
每页显示 20 50 100
Real-time fault detection method based on belief rule base for aircraft navigation system 被引量:14
1
作者 Zhao Xin Wang Shicheng +2 位作者 Zhang Jinsheng Fan Zhiliang Min Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期717-729,共13页
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ... Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement. 展开更多
关键词 Belief rule base Fault detection Fault tolerant control Integrated navigation Parameter recursive estimation algorithm
原文传递
Recognizing Expression Variant and Occluded Face Images Based on Nested HMM and Fuzzy Rule Based Approach 被引量:1
2
作者 Parvathi Ramalingam Shanthi Dhanushkodi 《Circuits and Systems》 2016年第6期983-994,共12页
The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of exp... The face recognition with expression and occlusion variation becomes the greatest challenge in biometric applications to recognize people. The proposed work concentrates on recognizing occlusion and seven kinds of expression variations such as neutral, surprise, happy, sad, fear, disgust and angry. During enrollment process, principle component analysis (PCA) detects facial regions on the input image. The detected facial region is converted into fuzzy domain data to make decision during recognition process. The Haar wavelet transform extracts features from the detected facial regions. The Nested Hidden markov model is employed to train these features and each feature of face image is considered as states in a Markov chain to perform learning among the features. The maximum likelihood for the input image was estimated by using Baum Welch algorithm and these features were kept on database. During recognition process, the expression and occlusion varied face image is taken as the test image and maximum likelihood for test image is found by following same procedure done in enrollment process. The matching score between maximum likelihood of input image and test image is computed and it is utilized by fuzzy rule based method to decide whether the test image belongs to authorized or unauthorized. The proposed work was tested among several expression varied and occluded face images of JAFFE and AR datasets respectively. 展开更多
关键词 Face Recognition Fuzzy rule based Method Expression and Occlusion Variation Baum Welch algorithm Nested Hidden Markov Model
在线阅读 下载PDF
Safety Assessment of Liquid Launch Vehicle Structures Based on Interpretable Belief Rule Base
3
作者 Gang Xiang Xiaoyu Cheng +1 位作者 Wei He Peng Han 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期273-298,共26页
A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure t... A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results. 展开更多
关键词 Liquid launch vehicle belief rule base with interpretability belief rule base whale optimization algorithm vibration frequency swaying angle
在线阅读 下载PDF
A Rule Based Evolutionary Optimization Approach for the Traveling Salesman Problem
4
作者 Wissam M. Alobaidi David J. Webb Eric Sandgren 《Intelligent Information Management》 2017年第4期115-132,共18页
The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many exi... The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance. 展开更多
关键词 TRAVELING SALESMAN EVOLUTIONARY OPTIMIZATION rule based Search HEURISTIC OPTIMIZATION Hybrid Genetic algorithm
在线阅读 下载PDF
A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis
5
作者 Chen Wei-wei He Wei +3 位作者 Zhu Hai-long Zhou Guo-hui Mu Quan-qi Han Peng 《Computers, Materials & Continua》 SCIE EI 2023年第3期6119-6143,共25页
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i... The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models. 展开更多
关键词 Hierarchical belief rule base(HBRB) evidence reasoning(ER) INTERPRETABILITY global sensitivity analysis(GSA) whale optimization algorithm(WOA)
在线阅读 下载PDF
Multi-objective optimization based optimal setting control for industrial double-stream alumina digestion process 被引量:1
6
作者 WANG Xiao-li LU Mei-yu +1 位作者 WEI Si-mi XIE Yong-fang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期173-185,共13页
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ... The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption. 展开更多
关键词 double-stream digestion process optimal setting control multi-objective optimization state transition algorithm rule based decision making
在线阅读 下载PDF
Ad Hoc Network Hybrid Management Protocol Based on Genetic Classifiers
7
作者 Fabio Garzia Cristina Perna Roberto Cusani 《Wireless Engineering and Technology》 2010年第2期69-80,共12页
The purpose of this paper is to solve the problem of Ad Hoc network routing protocol using a Genetic Algorithm based approach. In particular, the greater reliability and efficiency, in term of duration of communicatio... The purpose of this paper is to solve the problem of Ad Hoc network routing protocol using a Genetic Algorithm based approach. In particular, the greater reliability and efficiency, in term of duration of communication paths, due to the introduction of Genetic Classifier is demonstrated. 展开更多
关键词 Ad HOC Networks GENETIC algorithms GENETIC CLASSIFIER Systems Routing Protocols rule-based Processing
在线阅读 下载PDF
改进生物地理学优化算法求解模糊分布式柔性作业车间调度问题 被引量:1
8
作者 孙美玲 顾幸生 《控制理论与应用》 北大核心 2025年第4期713-721,共9页
经济全球化推动制造企业从单一工厂向多工厂协同模式转变,模糊分布式柔性作业车间调度问题(FDFJSP)成为调度领域的研究热点.为最小化FDFJSP的最大模糊完工时间,本文提出了一种基于模拟退火和局部搜索策略的生物地理学优化算法(BBOSL).... 经济全球化推动制造企业从单一工厂向多工厂协同模式转变,模糊分布式柔性作业车间调度问题(FDFJSP)成为调度领域的研究热点.为最小化FDFJSP的最大模糊完工时间,本文提出了一种基于模拟退火和局部搜索策略的生物地理学优化算法(BBOSL).根据问题特点,设计了工厂–随机键的新型编解码方案;通过调度规则生成半数初始种群以提高种群质量;提出了基于模拟退火算法的新解接受方法和基于关键工厂的局部搜索策略以增强搜索能力;通过对算法参数调优提升了算法性能.实验结果验证了改进策略的有效性,并与现有算法进行了对比实验,验证了其在模糊集中式和模糊分布式柔性作业车间调度问题上的优越性. 展开更多
关键词 生产调度 模糊分布式 柔性作业车间 生物地理学优化算法 调度规则 模拟退火
在线阅读 下载PDF
关于基于传统规则算法的预见性巡航在商用车应用
9
作者 罗朝发 陆昭冬 +4 位作者 李文静 李甲平 郑东 邱良胜 徐雪松 《内燃机与配件》 2025年第15期38-41,共4页
为提高重型商用车的燃油经济性并降低驾驶员劳动强度,本研究将预见性巡航控制(Predictive Cruise Control,PCC)系统应用于重型燃气/燃油商用车。基于传统规则算法的PCC策略通过制定预定义控制规则并进行标定优化,显著降低了对车载控制... 为提高重型商用车的燃油经济性并降低驾驶员劳动强度,本研究将预见性巡航控制(Predictive Cruise Control,PCC)系统应用于重型燃气/燃油商用车。基于传统规则算法的PCC策略通过制定预定义控制规则并进行标定优化,显著降低了对车载控制器的算力需求,提升了系统在现有硬件平台上的适配性。实车道路试验结果表明,与传统定速巡航相比,该PCC系统可实现3%~6%的稳定节能效果,验证了其在商用车节能驾驶中的实用价值。 展开更多
关键词 预见性巡航控制 规则算法 商用车节能 纵向控制优化 燃油经济性
在线阅读 下载PDF
金融决策认知体系跃迁:商业银行规则模型向算法模型演进的机理与路径
10
作者 黄伟恒 《西南金融》 北大核心 2025年第8期72-84,共13页
商业银行决策模型正经历从规则范式向算法范式的深层跃迁。本文揭示该转型本质是金融认知体系的重构:规则模型以显性制度降低交易成本,算法模型通过动态拓扑实现认知升维。全球实践表明,制度弹性与技术路径存在显著的地域分化,北美呈现... 商业银行决策模型正经历从规则范式向算法范式的深层跃迁。本文揭示该转型本质是金融认知体系的重构:规则模型以显性制度降低交易成本,算法模型通过动态拓扑实现认知升维。全球实践表明,制度弹性与技术路径存在显著的地域分化,北美呈现技术渗透与监管适配的协同演进,欧洲构建强伦理规制的系统化转型,亚太则形成后发市场的混合治理创新。中国商业银行呈现梯度化跃迁特征:国有大行依托制度优势推动系统重构,股份制银行聚焦垂直领域认知深化,区域银行实现地方性知识的算法再生。深层挑战集中于数据治理结构性缺陷、算法黑箱与监管透明度张力、伦理价值对齐困境及组织认知断层。亟需通过联邦化数据治理、可解释动态认知系统研发、算法全生命周期监管框架构建等路径,完成决策范式的价值理性回归。 展开更多
关键词 金融决策 规则模型 算法模型 金融创新 风险治理 数据治理 穿透式监管 监管科技
在线阅读 下载PDF
模糊控制算法赋能铁路轨道交通信号控制系统设计
11
作者 冯铁成 陈鹏 南亮生 《计算机应用文摘》 2025年第18期171-174,共4页
为提升复杂运营环境下铁路信号控制系统的自适应能力,文章基于模糊控制算法构建了一套适用于铁路轨道交通的信号控制系统。该系统采用分层式控制架构,并结合遗传算法对混合规则库进行优化,设计了包含轨旁设备部署、车载控制单元集成、... 为提升复杂运营环境下铁路信号控制系统的自适应能力,文章基于模糊控制算法构建了一套适用于铁路轨道交通的信号控制系统。该系统采用分层式控制架构,并结合遗传算法对混合规则库进行优化,设计了包含轨旁设备部署、车载控制单元集成、时延补偿通信协议在内的多重冗余体系。通过MATLAB搭建仿真平台,对高峰时段与突发故障等典型场景下的系统响应特性进行分析。实验结果表明,模糊控制算法能够将列车动态调整的响应延迟降低至0.82s(较传统PID控制提升42%),在突发故障场景下的冲突避免率达到98.7%,多列车协同调度能耗指标下降23.5%,有效验证了该系统在功能性能方面的优越性及其实际应用价值。 展开更多
关键词 模糊控制算法 模糊规则库 通信网络 控制指令
在线阅读 下载PDF
基于案例推理和规则推理的警情智能化决策模型研究
12
作者 杜镐 《计算机时代》 2025年第8期30-33,40,共5页
求助类警情传统上主要采用人工处理的方式,存在效率低、主观性强等问题。为提升警情处置效率,本研究构建了智能化辅助决策模型。利用某地级市2017—2023年607万条警情数据,通过BERT-MRC模型提取自杀类警情属性,建立案例库与规则库。采用... 求助类警情传统上主要采用人工处理的方式,存在效率低、主观性强等问题。为提升警情处置效率,本研究构建了智能化辅助决策模型。利用某地级市2017—2023年607万条警情数据,通过BERT-MRC模型提取自杀类警情属性,建立案例库与规则库。采用TF-IDF加权改进KNN算法进行案例检索。实验表明,改进算法较传统KNN显著提升案例匹配相似度,可为经验不足的民警提供决策支持。 展开更多
关键词 智能化决策 案例推理 规则推理 BERT-MRC TF-IDF加权KNN算法
在线阅读 下载PDF
基于模糊规则的热工过程非线性模型的研究 被引量:56
13
作者 吕剑虹 陈建勤 +2 位作者 刘志远 沈炯 陈来九 《中国电机工程学报》 EI CSCD 北大核心 2002年第11期132-137,共6页
建立精确的热工过程整体模型是对热工过程进行全 局优化控制的基础,而热工过程往往具有非线性和不确定 性,传统的描述热工过程动态数学模型的方法(如传递函 数等)难以建立非线性模型,从而难于精确表达热工过程 及实施整体优化控制。该... 建立精确的热工过程整体模型是对热工过程进行全 局优化控制的基础,而热工过程往往具有非线性和不确定 性,传统的描述热工过程动态数学模型的方法(如传递函 数等)难以建立非线性模型,从而难于精确表达热工过程 及实施整体优化控制。该文提出了一类实用的基于模糊规 则的热工过程非线性建模方法,具体为:首先通过聚类和 竞争学习算法,对热工过程的输入数据空间进行分区,然 后在每个局部的数据子空间上,利用递推的最小二乘辨识 算法(RLS)建立一个基于模糊规则的局部线性动态模型, 这样,一个典型的非线性热工过程可以通过一组基于模糊 规则的线性模型来表示。计算结果表明:基于模糊规则的 非线性模糊模型,不仅能精确地描述过程的非线性,而且 算法简单、实用。 展开更多
关键词 模糊规则 热工过程 非线性模型 数学模型 神经网络
在线阅读 下载PDF
挖掘关联规则的高效ABM算法 被引量:16
14
作者 牛小飞 石冰 +1 位作者 卢军 吴科 《计算机工程》 CAS CSCD 北大核心 2004年第11期118-120,共3页
提出了一种基于矩阵的挖掘关联规则的高效ABM算法,与经典的挖掘算法相比,该算法只需对数据库扫描一遍,并且存放辅助信息所需要的空间也比较少,实验表明该算法的效率较高。
关键词 关联规则 频繁项集 基于矩阵的算法
在线阅读 下载PDF
基于遗传算法与模糊逻辑融合的线路覆冰预测 被引量:27
15
作者 黄新波 王玉鑫 +3 位作者 朱永灿 郑心心 李弘博 王一各 《高电压技术》 EI CAS CSCD 北大核心 2016年第4期1228-1235,共8页
针对输电线路覆冰预测问题,提出了一种基于遗传算法与模糊逻辑融合的线路覆冰预测模型建立方法,同时对遗传算法与模糊逻辑融合理论及实际应用进行了研究与探讨。首先统计贵州电网8条输电线路的历史覆冰现场监测数据,对现场数据通过学习... 针对输电线路覆冰预测问题,提出了一种基于遗传算法与模糊逻辑融合的线路覆冰预测模型建立方法,同时对遗传算法与模糊逻辑融合理论及实际应用进行了研究与探讨。首先统计贵州电网8条输电线路的历史覆冰现场监测数据,对现场数据通过学习算法产生模糊规则。其次组合产生的模糊规则和先前的专家经验模糊规则,建立组合模糊规则库。接着运用遗传算法对输入—输出论域模糊划分、组合模糊规则库及隶属函数等覆冰模糊系统参数进行优化。最后通过贵州电网2014年的覆冰现场监测数据,验证优化后的线路覆冰预测模型。预测结果表明:覆冰厚度在0~5 mm之间,预测平均相对误差为0.016 5%,5~10 mm之间预测平均相对误差为-0.165%,10~18mm之间预测平均相对误差为3.34%。 展开更多
关键词 输电线路 在线监测 覆冰 覆冰预测 遗传算法 模糊逻辑 组合规则库
原文传递
静液传动混合动力车辆驱动系统优化匹配 被引量:8
16
作者 王昕 姜继海 于安才 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第7期66-70,共5页
为了解决通用优化算法无法有效计算静液传动混合动力车辆驱动系统优化匹配时设计变量具有复杂约束的问题,建立液压泵/马达排量与其转速范围的规则知识库,采用基于该规则知识库的自适应模拟退火遗传算法,对轮边驱动静液传动混合动力车辆... 为了解决通用优化算法无法有效计算静液传动混合动力车辆驱动系统优化匹配时设计变量具有复杂约束的问题,建立液压泵/马达排量与其转速范围的规则知识库,采用基于该规则知识库的自适应模拟退火遗传算法,对轮边驱动静液传动混合动力车辆的驱动系统关键元件及系统参数进行优化匹配.对优化后的混合动力车辆的节能和动力特性进行仿真分析,并采取能量对应方法对启动-制动-启动工况进行模拟试验.仿真和模拟试验结果表明,基于规则知识库的自适应模拟退火算法合理有效,优化后的混合动力车辆节能和动力性能均优于相应的传统车辆. 展开更多
关键词 静液传动混合动力 优化匹配 规则知识库 遗传算法
在线阅读 下载PDF
基于混合教与学优化算法的炼钢连铸调度 被引量:7
17
作者 马文强 张超勇 +2 位作者 唐秋华 邵新宇 贾艳 《计算机集成制造系统》 EI CSCD 北大核心 2015年第5期1271-1278,共8页
根据炼钢厂的实际生产环境,建立了无等待多工艺路线的炼钢连铸模型,提出一种混合教与学优化算法求解该模型。在混合算法中,引入转换规则的教与学优化算法求解离散问题;采用变邻域搜索调整机器选择,教与学优化算法调整调度顺序的方式,将... 根据炼钢厂的实际生产环境,建立了无等待多工艺路线的炼钢连铸模型,提出一种混合教与学优化算法求解该模型。在混合算法中,引入转换规则的教与学优化算法求解离散问题;采用变邻域搜索调整机器选择,教与学优化算法调整调度顺序的方式,将并行问题串行化。对具体实例进行测试,将人工调度方法、遗传算法、教与学优化和混合教与学优化算法的结果进行比较,验证了所提算法的可行性和有效性。 展开更多
关键词 炼钢连铸 教与学优化算法 转换规则 浇次 炉次
在线阅读 下载PDF
基于图的Apriori改进算法 被引量:11
18
作者 白似雪 朱涛 梅君 《南昌大学学报(工科版)》 CAS 2009年第1期36-39,共4页
Apriori算法是关联规则挖掘中的经典算法,算法的核心思想是一种基于频繁理论的自底向上的递推方法。文中对Apriori算法进行分析,发现其中存在的问题。对Apriori算法做了改进。改进后的算法基于自顶向下的思想。利用有向图给出计算候选... Apriori算法是关联规则挖掘中的经典算法,算法的核心思想是一种基于频繁理论的自底向上的递推方法。文中对Apriori算法进行分析,发现其中存在的问题。对Apriori算法做了改进。改进后的算法基于自顶向下的思想。利用有向图给出计算候选项集和项集支持度计数的更快的方法,同时简化了Apriori算法的连接和剪枝操作,从而在时间和空间上提高了Apriori算法的效率。 展开更多
关键词 数据挖掘 关联规则 APRIORI算法 基于图的Apriori算法
在线阅读 下载PDF
关联规则开采的集合算法 被引量:3
19
作者 冯玉才 刘玉葆 王元珍 《小型微型计算机系统》 CSCD 北大核心 2003年第3期563-566,共4页
为了有效地从商业数据库中开采出有用的信息 ,需要解决的两个关键问题 :(1)如何将现有的各种开采算法集成到 DBMS(数据库管理系统 )中去 ,(2 )提高开采的效率 .本文以关联规则开采为例 ,研究了上述问题 ,为了将关联规则开采算法与 DBMS... 为了有效地从商业数据库中开采出有用的信息 ,需要解决的两个关键问题 :(1)如何将现有的各种开采算法集成到 DBMS(数据库管理系统 )中去 ,(2 )提高开采的效率 .本文以关联规则开采为例 ,研究了上述问题 ,为了将关联规则开采算法与 DBMS进行无缝集成 ,我们需要研制面向集合操作的集合算法 ,STEM是关联规则开采的经典集合算法 ,我们在分析了 STEM算法性能以后提出了改进的 SETM*算法 ,为了提高开采的效率我们给出了并行开采算法PSETM* (Parallel SETM* ) .从算法比较中可以看出 SETM*比 展开更多
关键词 数据开采 关联规则 集合算法 并行算法 数据库 知识发现
在线阅读 下载PDF
置信规则库结构识别的置信K均值聚类算法 被引量:6
20
作者 李彬 王红卫 +2 位作者 杨剑波 祁超 郭敏 《系统工程》 CSSCI CSCD 北大核心 2011年第5期85-91,共7页
针对置信规则推理作为系统控制器时的应用,提出一种置信K均值聚类算法用于置信规则库的结构识别。在构建好置信规则库的推理框架后,该算法通过对规则前项输入变量的历史数据进行挖掘,得到合理的置信规则库结构,提高推理与决策的精度。... 针对置信规则推理作为系统控制器时的应用,提出一种置信K均值聚类算法用于置信规则库的结构识别。在构建好置信规则库的推理框架后,该算法通过对规则前项输入变量的历史数据进行挖掘,得到合理的置信规则库结构,提高推理与决策的精度。相对于传统专家知识确定置信规则库结构的方法,该算法的特点是:最优聚类与相邻评价等级之间的距离成正比,与人的认知能力相一致;最优聚类保证采样点以最小的距离靠近评价等级,也就是保证输入变量尽可能趋近置信规则前项。通过置信规则推理在集约生产计划中应用的案例分析验证了该算法的合理性和有效性。 展开更多
关键词 置信规则推理 证据推理 结构识别 聚类算法 集约生产计划
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部