Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
通过分析学生在学习、生活过程中产生的校园行为数据,如一卡通、图书借阅、学业成绩等,在RankNet算法基础上提出一种基于专业与学期的多任务排序学习算法(a multi-task learning RankNet based on major and semester,MSRN).此算法在构...通过分析学生在学习、生活过程中产生的校园行为数据,如一卡通、图书借阅、学业成绩等,在RankNet算法基础上提出一种基于专业与学期的多任务排序学习算法(a multi-task learning RankNet based on major and semester,MSRN).此算法在构建大数据分析模型的基础上,探究学生学习勤奋度、生活规律性与学业表现之间的相关性.仿真结果表明,本文算法较之其他算法可更好地用于预测学生在校期间的学业表现.展开更多
We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of dee...We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of deep leaming methods. We insert a linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep model. The loss objective for optimization is a weighted sum of linear loss of the added new layer and non-linear loss of the last output layer. We modify the model structure of deep canonical correlation analysis (DCCA), i.e., adding a third semantic view to regularize text and image pairs and embedding the structure into our framework, for cross-modal retrieval tasks such as text-to-image search and image-to-text search. The experimental results show the performance of the modified model is better than similar state-of-art approaches on a dataset of National University of Singapore (NUS-WIDE). To validate the generalization ability of our framework, we apply our framework to RankNet, a ranking model optimized by stochastic gradient descent. Our method outperforms RankNet and converges more quickly, which indicates our progressive framework could provide a better and faster solution for deep neural networks.展开更多
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
文摘通过分析学生在学习、生活过程中产生的校园行为数据,如一卡通、图书借阅、学业成绩等,在RankNet算法基础上提出一种基于专业与学期的多任务排序学习算法(a multi-task learning RankNet based on major and semester,MSRN).此算法在构建大数据分析模型的基础上,探究学生学习勤奋度、生活规律性与学业表现之间的相关性.仿真结果表明,本文算法较之其他算法可更好地用于预测学生在校期间的学业表现.
基金supported by the National Natural Science Foundation of China (61471049, 61372169, 61532018)the Postgraduate Innovation Fund of SICE, BUPT, 2015
文摘We propose a novel progressive framework to optimize deep neural networks. The idea is to try to combine the stability of linear methods and the ability of learning complex and abstract internal representations of deep leaming methods. We insert a linear loss layer between the input layer and the first hidden non-linear layer of a traditional deep model. The loss objective for optimization is a weighted sum of linear loss of the added new layer and non-linear loss of the last output layer. We modify the model structure of deep canonical correlation analysis (DCCA), i.e., adding a third semantic view to regularize text and image pairs and embedding the structure into our framework, for cross-modal retrieval tasks such as text-to-image search and image-to-text search. The experimental results show the performance of the modified model is better than similar state-of-art approaches on a dataset of National University of Singapore (NUS-WIDE). To validate the generalization ability of our framework, we apply our framework to RankNet, a ranking model optimized by stochastic gradient descent. Our method outperforms RankNet and converges more quickly, which indicates our progressive framework could provide a better and faster solution for deep neural networks.