An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of t...An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.展开更多
To design retrieval algorithm of spatial relations for spatial objects with randomness in GIS,this paper builds up the membership functions based on set theory idea,used for determination of topological spatial relati...To design retrieval algorithm of spatial relations for spatial objects with randomness in GIS,this paper builds up the membership functions based on set theory idea,used for determination of topological spatial relations between random objects,such as between point and point,point and line or polygon,which provides theoretical basis for retrieving spatial relations between certain and random objects.Finally,this paper interprets detailed methods and steps of realizing them by means of some simple examples under the GIS’s environment.展开更多
Cronbach’s Alpha coefficient is the most popular method of examining reliability. It is typically used when the researcher has several Likert-type items that are summed or averaged to make a composite score. Distribu...Cronbach’s Alpha coefficient is the most popular method of examining reliability. It is typically used when the researcher has several Likert-type items that are summed or averaged to make a composite score. Distribution of alpha coefficient has been subjected of many studies. In this study relationship between randomness and Cronbach alpha coefficient were investigated and in this context, present study was examined the question“What is the distribution of the coefficient alpha when a Likert-type scale is answered randomly?” Data were generated in the form of five point Likert-type items and Monte Carlosimulation was run for 5000 times for different item numbers.展开更多
Is it true that there is an implicit understanding that Brownian motion or fractional Brownian motion is the driving force behind stock price fluctuations? An analysis of daily prices and volumes of a particular stock...Is it true that there is an implicit understanding that Brownian motion or fractional Brownian motion is the driving force behind stock price fluctuations? An analysis of daily prices and volumes of a particular stock revealed the following findings: 1) the logarithms of the moving averages of stock prices and volumes have a strong positive correlation, even though price and volume appear to be fluctuating independently of each other, 2) price and volume fluctuations are messy, but these time series are not necessarily Brownian motion by replacing each daily value by 1 or –1 when it rises or falls compared to the previous day’s value, and 3) the difference between the volume on the previous day and that on the current day is periodic by the frequency analysis. Using these findings, we constructed differential equations for stock prices, the number of buy orders, and the number of sell orders. These equations include terms for both randomness and periodicity. It is apparent that both randomness and periodicity are essential for stock price fluctuations to be sustainable, and that stock prices show large hill-like or valley-like fluctuations stochastically without any increasing or decreasing trend, and repeat themselves over a certain range.展开更多
Six samples of linear high randomness 60PHB/ PET thermotropic liquid crystal copolyesters are made by melt copolymerization at 290℃ , whose randomness about 0.955 is measured by the discernible ’H-NMR spectrometer. ...Six samples of linear high randomness 60PHB/ PET thermotropic liquid crystal copolyesters are made by melt copolymerization at 290℃ , whose randomness about 0.955 is measured by the discernible ’H-NMR spectrometer. High tenacity, high module fiber is prepared by melt spinning in liquid crystal phase. The effect of molecular weight, shear rate, temperature as well as spinning drawn ratio on the mechanical behavior of 60PHB / PET copolyester fiber are shown that, lower shear rate (2<sup> </sup>10 s<sup>-1</sup>), higher temperature melting (300℃ ), lower temperature spinning (280℃ ) and higher molecular weight are favourable to the increase of the fiber mechanical properties. With the variance of drawn ratio, fiber mechanical property has a transition point due to traversion from shear-orientation to drawn-orientation. The copolyester fiber has high crystallinity, high orientation at the crystalline region, high chain orientation and high regular fibrillar structure.展开更多
Quantum randomness amplification protocols have increasingly attracted attention tbr their tantastic ability to ampllI~, weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic n...Quantum randomness amplification protocols have increasingly attracted attention tbr their tantastic ability to ampllI~, weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic noise-tolerant randomness amplification protocol using a finite number of untrusted devices was proposed. The protocol has the composable security against non-signalling eavesdroppers and could produce a single bit of randomness from weak randomness sources, which is certified by the violation of certain Bell inequalities. However, the protocol has a non-ignorable limitation on the min- entropy of independent sources. In this paper, we further develop the randomness amplification method and present a novel quantum randomness amplification protocol based on an explicit non-malleable two independent-source randomness extractor, which could remarkably reduce the above-mentioned specific limitation. Moreover, the composable security of our improved protocol is also proposed. Our results could significantly expand the application range for practical quantum randomness amplification, and provide a new insight on the practical design method for randomness extraction.展开更多
The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features...The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.展开更多
This paper describes the geometric and statistical properties of areal object under randomness. In order to describe formally such a uncertain topological relation, a new formal model (i.e. 4ID model) is proposed. On ...This paper describes the geometric and statistical properties of areal object under randomness. In order to describe formally such a uncertain topological relation, a new formal model (i.e. 4ID model) is proposed. On the basis of this, the effects of positional uncertainty on topological relations between areal objects are investigated in detail. Some possibility functions for the determination of relations are constructed based on the assumption that randomness of point location complies with a normal distribution, and the concept of uncertain sets of topological relations under randomness is introduced.展开更多
In this work, we consider an evolutionary prisoner's dilemma game on a homogeneous random network with the richest-following strategy adoption rule. By constructing homogeneous random networks from a regular ring gra...In this work, we consider an evolutionary prisoner's dilemma game on a homogeneous random network with the richest-following strategy adoption rule. By constructing homogeneous random networks from a regular ring graph, we investigate the effects of topologicaJ randomness on cooperation. In contrast to the ordinary view that the presence of smaJ1 amount of shortcuts in ring graphs favors cooperation, we find the cooperation inhibition by weak topological randomness. The explanations on the observations are presented.展开更多
Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections...Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation.展开更多
We describe here a comprehensive framework for intelligent information management (IIM) of data collection and decision-making actions for reliable and robust event processing and recognition. This is driven by algori...We describe here a comprehensive framework for intelligent information management (IIM) of data collection and decision-making actions for reliable and robust event processing and recognition. This is driven by algorithmic information theory (AIT), in general, and algorithmic randomness and Kolmogorov complexity (KC), in particular. The processing and recognition tasks addressed include data discrimination and multilayer open set data categorization, change detection, data aggregation, clustering and data segmentation, data selection and link analysis, data cleaning and data revision, and prediction and identification of critical states. The unifying theme throughout the paper is that of “compression entails comprehension”, which is realized using the interrelated concepts of randomness vs. regularity and Kolmogorov complexity. The constructive and all encompassing active learning (AL) methodology, which mediates and supports the above theme, is context-driven and takes advantage of statistical learning, in general, and semi-supervised learning and transduction, in particular. Active learning employs explore and exploit actions characteristic of closed-loop control for evidence accumulation in order to revise its prediction models and to reduce uncertainty. The set-based similarity scores, driven by algorithmic randomness and Kolmogorov complexity, employ strangeness / typicality and p-values. We propose the application of the IIM framework to critical states prediction for complex physical systems;in particular, the prediction of cyclone genesis and intensification.展开更多
Random numbers are one of the key foundations of cryptography.This work implements a discrete quantum random number generator(QRNG)based on the tunneling effect of electrons in an avalanche photo diode.Without any pos...Random numbers are one of the key foundations of cryptography.This work implements a discrete quantum random number generator(QRNG)based on the tunneling effect of electrons in an avalanche photo diode.Without any post-processing and conditioning,this QRNG can output raw sequences at a rate of 100 Mbps.Remarkably,the statistical min-entropy of the 8,000,000 bits sequence reaches 0.9944 bits/bit,and the min-entropy validated by NIST SP 800-90B reaches 0.9872 bits/bit.This metric is currently the highest value we have investigated for QRNG raw sequences.Moreover,this QRNG can continuously and stably output raw sequences with high randomness over extended periods.The system produced a continuous output of 1,174 Gbits raw sequence for a duration of 11,744 s,with every 8 Mbits forming a unit to obtain a statistical min-entropy distribution with an average value of 0.9892 bits/bit.The statistical min-entropy of all data(1,174 Gbits)achieves the value of0.9951 bits/bit.This QRNG can produce high-quality raw sequences with good randomness and stability.It has the potential to meet the high demand in cryptography for random numbers with high quality.展开更多
Interfacial transition zones (ITZs) between aggregates and mortar are the weakest parts in concrete. The random aggregate generation and packing algorithm was utilized to create a two-phase concrete model, and the z...Interfacial transition zones (ITZs) between aggregates and mortar are the weakest parts in concrete. The random aggregate generation and packing algorithm was utilized to create a two-phase concrete model, and the zero-thickness cohesive elements with different normal distribution parameters were used to model the ITZs with random mechanical properties. A number of uniaxial tension-induced fracture simulations were carried out, and the effects of the random parameters on the fracture behavior of concrete were statistically analyzed. The results show that, different from the dissipated fracture energy, the peak load of concrete does not always obey a normal distribution, when the elastic stiffness, tensile strength, or fracture energy of ITZs is normally distributed. The tensile strength of the ITZs has a significant effect on the fracture behavior of concrete, and its large standard deviation leads to obvious diversity of the fracture path in both location and shape.展开更多
This paper deals the randomness effect of the pressure of carbonic gas on the carbonation phenomenon of the reinforced concrete. This analysis concentrates on the evaluation of carbonation depth (Xc) and the carbonati...This paper deals the randomness effect of the pressure of carbonic gas on the carbonation phenomenon of the reinforced concrete. This analysis concentrates on the evaluation of carbonation depth (Xc) and the carbonation time (T1) which is the time necessary so that the face of carbonation arrives until the reinforcement from a probabilistic analysis. Monte Carlo simulations are realized under the assumption that the carbonic gas on the surface of the concrete is random variable with a log-normal probability distribution.展开更多
In this work,we investigate disordered Dirac fermions from the perspective of quantum entanglement,which provides a different angle compared to the ordinary perturbative renormalization group(RG)analysis.We consider D...In this work,we investigate disordered Dirac fermions from the perspective of quantum entanglement,which provides a different angle compared to the ordinary perturbative renormalization group(RG)analysis.We consider Dirac fermions subjected to random hopping and random flux,which respectively fall into the chiral Gaussian orthogonal ensemble(cGOE)and chiral Gaussian unitary ensemble(cGUE)universality classes.Existing studies based on perturbative calculations suggest that both types of randomness are marginal.Here,through numerical simulations of the corresponding lattice models,we find that these two different types of randomness exhibit distinct entanglement features,signaling completely different properties in contrast to the perturbative RG analysis.In particular,although the entropy area-law is generally held for both types of randomness,we identify that the subleading term of the entanglement entropy is enhanced by random flux but not by random hopping.This subleading term is known as the entropic F-function in the clean limit without disorder.Our observations indicate that disordered theories in cGOE and cGUE are essentially different,which recalls careful analysis on the RG calculations.展开更多
Luby and Rackoff idealized DES by replacing each round function with one large random function. In this paper, the author idealizes Camellia by replacing each S-box with one small random function, which is named Camel...Luby and Rackoff idealized DES by replacing each round function with one large random function. In this paper, the author idealizes Camellia by replacing each S-box with one small random function, which is named Camellialike scheme. It is then proved that five-round Camellia-like scheme is pseudorandom and eight-round Camellia-like scheme is super-pseudorandom for adaptive adversaries. Further the paper considers more efficient construction of Camellia-like scheme, and discusses how to construct pseudorandom Camellia-like scheme from less random functions.展开更多
Traffic encryption techniques facilitate cyberattackers to hide their presence and activities.Traffic classification is an important method to prevent network threats.However,due to the tremendous traffic volume and l...Traffic encryption techniques facilitate cyberattackers to hide their presence and activities.Traffic classification is an important method to prevent network threats.However,due to the tremendous traffic volume and limitations of computing,most existing traffic classification techniques are inapplicable to the high-speed network environment.In this paper,we propose a High-speed Encrypted Traffic Classification(HETC)method containing two stages.First,to efficiently detect whether traffic is encrypted,HETC focuses on randomly sampled short flows and extracts aggregation entropies with chi-square test features to measure the different patterns of the byte composition and distribution between encrypted and unencrypted flows.Second,HETC introduces binary features upon the previous features and performs fine-grained traffic classification by combining these payload features with a Random Forest model.The experimental results show that HETC can achieve a 94%F-measure in detecting encrypted flows and a 85%–93%F-measure in classifying fine-grained flows for a 1-KB flow-length dataset,outperforming the state-of-the-art comparison methods.Meanwhile,HETC does not need to wait for the end of the flow and can extract mass computing features.The average time for HETC to process each flow is only 2 or 16 ms,which is lower than the flow duration in most cases,making it a good candidate for high-speed traffic classification.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Betwee...Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Between April 2023 and October 2023,we enrolled patients with breast cancer treated in the Department of Breast Cancer and Oncology at Sun Yat-Sen Memorial Hospital,Sun Yat-Sen University,Guangdong Province.The patients were randomly divided into an intervention group(n=118)and a control group(n=119)using block randomization.The intervention group received the VR intervention 3-5 times over 5±2 weeks using natural landscapes with music or relaxation guidance,and the duration of each VR intervention was 15±3 min.The control group received routine nursing care,including disease education and psychological counseling.Patients were assessed using the Type D Scale,Positive and Negative Affect Scale,and Distress Thermometer,and adverse events during the intervention were recorded.Results:Overall,85 patients completed the study(44 in the intervention group and 41 in the control group).Patients with Type D personalities showed more negative emotions[25.0(21.5,27.5)vs.19.0(16.0,24.0),P=0.001]and distressed attitudes[4.0(2.0,5.0)vs.3.0(1.0,4.0),P=0.020]with fewer positive emotions(27.2±5.6 vs.31.0±5.9,P=0.014)than those with non-Type D personalities.Total population analysis revealed no significant differences between the groups.However,in the subgroup analysis,patients with Type D personalities in the intervention group showed greater relief from negative emotions than those in the control group[median difference,-5.0(-9.0,-2.5)vs.-2.0(-4.0,2.0),P=0.046].No significant differences were found between groups of patients with non-Type D personality traits.The proportion of adverse events was not significantly different between groups(P=0.110).Conclusions:Breast cancer patients with Type D personalities suffer more severe negative emotions and distress,and more attention should be paid to them.VR intervention significantly and safely reduced negative emotions in patients with Type D personalities.展开更多
基金Projects(51039001,51009063) supported by the National Natural Science Foundation of ChinaProject(SX2010-026) supported by State Council Three Gorges Project Construction Committee Executive Office,China+1 种基金Project(2012BS046) supported by Henan University of Technology,ChinaProject(BYHGLC-2010-02) supported by the Guangzhou Water Authority,China
文摘An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment(MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.
文摘To design retrieval algorithm of spatial relations for spatial objects with randomness in GIS,this paper builds up the membership functions based on set theory idea,used for determination of topological spatial relations between random objects,such as between point and point,point and line or polygon,which provides theoretical basis for retrieving spatial relations between certain and random objects.Finally,this paper interprets detailed methods and steps of realizing them by means of some simple examples under the GIS’s environment.
文摘Cronbach’s Alpha coefficient is the most popular method of examining reliability. It is typically used when the researcher has several Likert-type items that are summed or averaged to make a composite score. Distribution of alpha coefficient has been subjected of many studies. In this study relationship between randomness and Cronbach alpha coefficient were investigated and in this context, present study was examined the question“What is the distribution of the coefficient alpha when a Likert-type scale is answered randomly?” Data were generated in the form of five point Likert-type items and Monte Carlosimulation was run for 5000 times for different item numbers.
文摘Is it true that there is an implicit understanding that Brownian motion or fractional Brownian motion is the driving force behind stock price fluctuations? An analysis of daily prices and volumes of a particular stock revealed the following findings: 1) the logarithms of the moving averages of stock prices and volumes have a strong positive correlation, even though price and volume appear to be fluctuating independently of each other, 2) price and volume fluctuations are messy, but these time series are not necessarily Brownian motion by replacing each daily value by 1 or –1 when it rises or falls compared to the previous day’s value, and 3) the difference between the volume on the previous day and that on the current day is periodic by the frequency analysis. Using these findings, we constructed differential equations for stock prices, the number of buy orders, and the number of sell orders. These equations include terms for both randomness and periodicity. It is apparent that both randomness and periodicity are essential for stock price fluctuations to be sustainable, and that stock prices show large hill-like or valley-like fluctuations stochastically without any increasing or decreasing trend, and repeat themselves over a certain range.
文摘Six samples of linear high randomness 60PHB/ PET thermotropic liquid crystal copolyesters are made by melt copolymerization at 290℃ , whose randomness about 0.955 is measured by the discernible ’H-NMR spectrometer. High tenacity, high module fiber is prepared by melt spinning in liquid crystal phase. The effect of molecular weight, shear rate, temperature as well as spinning drawn ratio on the mechanical behavior of 60PHB / PET copolyester fiber are shown that, lower shear rate (2<sup> </sup>10 s<sup>-1</sup>), higher temperature melting (300℃ ), lower temperature spinning (280℃ ) and higher molecular weight are favourable to the increase of the fiber mechanical properties. With the variance of drawn ratio, fiber mechanical property has a transition point due to traversion from shear-orientation to drawn-orientation. The copolyester fiber has high crystallinity, high orientation at the crystalline region, high chain orientation and high regular fibrillar structure.
基金Project supported by the National Natural Science Foundation of China(Grant No.61775185)
文摘Quantum randomness amplification protocols have increasingly attracted attention tbr their tantastic ability to ampllI~, weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic noise-tolerant randomness amplification protocol using a finite number of untrusted devices was proposed. The protocol has the composable security against non-signalling eavesdroppers and could produce a single bit of randomness from weak randomness sources, which is certified by the violation of certain Bell inequalities. However, the protocol has a non-ignorable limitation on the min- entropy of independent sources. In this paper, we further develop the randomness amplification method and present a novel quantum randomness amplification protocol based on an explicit non-malleable two independent-source randomness extractor, which could remarkably reduce the above-mentioned specific limitation. Moreover, the composable security of our improved protocol is also proposed. Our results could significantly expand the application range for practical quantum randomness amplification, and provide a new insight on the practical design method for randomness extraction.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447105 and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20050027001
文摘The transport properties of coupled Brownian motors in rocking ratchet are investigated via solving Langevin equation. By means of velocity, diffusion coefficient, and their ratio (Peclet number), different features from a single particle have been found. In the regime of low-to-moderate D, the average velocity of elastically coupled Brownian motors is larger than that of a single Brownian particles; the Peclet number of elastically coupled Brownian motors is peaked functions of intensity of noise D but the Peclet number of a single Brownian motor decreases monotonously with the increase of a single Brownian motor. The results exhibit an interesting cooperative behavior between coupled particles subjected to a rocking force, which can generate directed transport with low randomness or high transport coherence in symmetrical periodic potential.
文摘This paper describes the geometric and statistical properties of areal object under randomness. In order to describe formally such a uncertain topological relation, a new formal model (i.e. 4ID model) is proposed. On the basis of this, the effects of positional uncertainty on topological relations between areal objects are investigated in detail. Some possibility functions for the determination of relations are constructed based on the assumption that randomness of point location complies with a normal distribution, and the concept of uncertain sets of topological relations under randomness is introduced.
基金Supported by the Project of NECT-07-0112 the National Natural Science Foundation of China under Grant Nos. 10775022 and 90921015
文摘In this work, we consider an evolutionary prisoner's dilemma game on a homogeneous random network with the richest-following strategy adoption rule. By constructing homogeneous random networks from a regular ring graph, we investigate the effects of topologicaJ randomness on cooperation. In contrast to the ordinary view that the presence of smaJ1 amount of shortcuts in ring graphs favors cooperation, we find the cooperation inhibition by weak topological randomness. The explanations on the observations are presented.
基金the National Key Research and Development Program of China(Grant No.2020YFA0309702)NSAF(Grant No.U2130205)+3 种基金the National Natural Science Foundation of China(Grant Nos.62101597,61605248,and 61505261)the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies。
文摘Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation.
文摘We describe here a comprehensive framework for intelligent information management (IIM) of data collection and decision-making actions for reliable and robust event processing and recognition. This is driven by algorithmic information theory (AIT), in general, and algorithmic randomness and Kolmogorov complexity (KC), in particular. The processing and recognition tasks addressed include data discrimination and multilayer open set data categorization, change detection, data aggregation, clustering and data segmentation, data selection and link analysis, data cleaning and data revision, and prediction and identification of critical states. The unifying theme throughout the paper is that of “compression entails comprehension”, which is realized using the interrelated concepts of randomness vs. regularity and Kolmogorov complexity. The constructive and all encompassing active learning (AL) methodology, which mediates and supports the above theme, is context-driven and takes advantage of statistical learning, in general, and semi-supervised learning and transduction, in particular. Active learning employs explore and exploit actions characteristic of closed-loop control for evidence accumulation in order to revise its prediction models and to reduce uncertainty. The set-based similarity scores, driven by algorithmic randomness and Kolmogorov complexity, employ strangeness / typicality and p-values. We propose the application of the IIM framework to critical states prediction for complex physical systems;in particular, the prediction of cyclone genesis and intensification.
基金supported by the National Natural Science Foundation of China(Grant No.51727805)。
文摘Random numbers are one of the key foundations of cryptography.This work implements a discrete quantum random number generator(QRNG)based on the tunneling effect of electrons in an avalanche photo diode.Without any post-processing and conditioning,this QRNG can output raw sequences at a rate of 100 Mbps.Remarkably,the statistical min-entropy of the 8,000,000 bits sequence reaches 0.9944 bits/bit,and the min-entropy validated by NIST SP 800-90B reaches 0.9872 bits/bit.This metric is currently the highest value we have investigated for QRNG raw sequences.Moreover,this QRNG can continuously and stably output raw sequences with high randomness over extended periods.The system produced a continuous output of 1,174 Gbits raw sequence for a duration of 11,744 s,with every 8 Mbits forming a unit to obtain a statistical min-entropy distribution with an average value of 0.9892 bits/bit.The statistical min-entropy of all data(1,174 Gbits)achieves the value of0.9951 bits/bit.This QRNG can produce high-quality raw sequences with good randomness and stability.It has the potential to meet the high demand in cryptography for random numbers with high quality.
基金supported by the National Basic Research Program of China (973 Program:2011CB013800)
文摘Interfacial transition zones (ITZs) between aggregates and mortar are the weakest parts in concrete. The random aggregate generation and packing algorithm was utilized to create a two-phase concrete model, and the zero-thickness cohesive elements with different normal distribution parameters were used to model the ITZs with random mechanical properties. A number of uniaxial tension-induced fracture simulations were carried out, and the effects of the random parameters on the fracture behavior of concrete were statistically analyzed. The results show that, different from the dissipated fracture energy, the peak load of concrete does not always obey a normal distribution, when the elastic stiffness, tensile strength, or fracture energy of ITZs is normally distributed. The tensile strength of the ITZs has a significant effect on the fracture behavior of concrete, and its large standard deviation leads to obvious diversity of the fracture path in both location and shape.
文摘This paper deals the randomness effect of the pressure of carbonic gas on the carbonation phenomenon of the reinforced concrete. This analysis concentrates on the evaluation of carbonation depth (Xc) and the carbonation time (T1) which is the time necessary so that the face of carbonation arrives until the reinforcement from a probabilistic analysis. Monte Carlo simulations are realized under the assumption that the carbonic gas on the surface of the concrete is random variable with a log-normal probability distribution.
基金supported by the National Key Research and Development Program(Grant No.2022YFA1402204)the National Natural Science Foundation[Grant Nos.22373095(QL),52471020(WC),and 12474144(WZ)]+2 种基金the Innovation Program for Quantum Science and Technology[Grant No.2021ZD0303306(QL)]the Fundamental Research Funds for the Central Universities[Grant No.JZ2025HGQA0310(WC)]the Science Research Foundation for High-Level Talents of Anhui University of Science and Technology[Grant No.YJ20240002(WL)].
文摘In this work,we investigate disordered Dirac fermions from the perspective of quantum entanglement,which provides a different angle compared to the ordinary perturbative renormalization group(RG)analysis.We consider Dirac fermions subjected to random hopping and random flux,which respectively fall into the chiral Gaussian orthogonal ensemble(cGOE)and chiral Gaussian unitary ensemble(cGUE)universality classes.Existing studies based on perturbative calculations suggest that both types of randomness are marginal.Here,through numerical simulations of the corresponding lattice models,we find that these two different types of randomness exhibit distinct entanglement features,signaling completely different properties in contrast to the perturbative RG analysis.In particular,although the entropy area-law is generally held for both types of randomness,we identify that the subleading term of the entanglement entropy is enhanced by random flux but not by random hopping.This subleading term is known as the entropic F-function in the clean limit without disorder.Our observations indicate that disordered theories in cGOE and cGUE are essentially different,which recalls careful analysis on the RG calculations.
基金Supported partially by the National Natural Science Foundation of China under Grants No, 60373047 and No, 90304007 the National Basic Research 973 Program of China under Grant No. 2004CB318004 the National High-Technology Development 863 Program of China under Grant No. 2003AA144030.
文摘Luby and Rackoff idealized DES by replacing each round function with one large random function. In this paper, the author idealizes Camellia by replacing each S-box with one small random function, which is named Camellialike scheme. It is then proved that five-round Camellia-like scheme is pseudorandom and eight-round Camellia-like scheme is super-pseudorandom for adaptive adversaries. Further the paper considers more efficient construction of Camellia-like scheme, and discusses how to construct pseudorandom Camellia-like scheme from less random functions.
基金supported by the National Natural Science Foundation of China under Grant No.U1736216。
文摘Traffic encryption techniques facilitate cyberattackers to hide their presence and activities.Traffic classification is an important method to prevent network threats.However,due to the tremendous traffic volume and limitations of computing,most existing traffic classification techniques are inapplicable to the high-speed network environment.In this paper,we propose a High-speed Encrypted Traffic Classification(HETC)method containing two stages.First,to efficiently detect whether traffic is encrypted,HETC focuses on randomly sampled short flows and extracts aggregation entropies with chi-square test features to measure the different patterns of the byte composition and distribution between encrypted and unencrypted flows.Second,HETC introduces binary features upon the previous features and performs fine-grained traffic classification by combining these payload features with a Random Forest model.The experimental results show that HETC can achieve a 94%F-measure in detecting encrypted flows and a 85%–93%F-measure in classifying fine-grained flows for a 1-KB flow-length dataset,outperforming the state-of-the-art comparison methods.Meanwhile,HETC does not need to wait for the end of the flow and can extract mass computing features.The average time for HETC to process each flow is only 2 or 16 ms,which is lower than the flow duration in most cases,making it a good candidate for high-speed traffic classification.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金supported by a project of the National Natural Science Foundation of China:Research on the integration of artificial intelligence and virtual reality technology to promote psychological rehabilitation of breast cancer patients with different personalities(project approval no.82073408).
文摘Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Between April 2023 and October 2023,we enrolled patients with breast cancer treated in the Department of Breast Cancer and Oncology at Sun Yat-Sen Memorial Hospital,Sun Yat-Sen University,Guangdong Province.The patients were randomly divided into an intervention group(n=118)and a control group(n=119)using block randomization.The intervention group received the VR intervention 3-5 times over 5±2 weeks using natural landscapes with music or relaxation guidance,and the duration of each VR intervention was 15±3 min.The control group received routine nursing care,including disease education and psychological counseling.Patients were assessed using the Type D Scale,Positive and Negative Affect Scale,and Distress Thermometer,and adverse events during the intervention were recorded.Results:Overall,85 patients completed the study(44 in the intervention group and 41 in the control group).Patients with Type D personalities showed more negative emotions[25.0(21.5,27.5)vs.19.0(16.0,24.0),P=0.001]and distressed attitudes[4.0(2.0,5.0)vs.3.0(1.0,4.0),P=0.020]with fewer positive emotions(27.2±5.6 vs.31.0±5.9,P=0.014)than those with non-Type D personalities.Total population analysis revealed no significant differences between the groups.However,in the subgroup analysis,patients with Type D personalities in the intervention group showed greater relief from negative emotions than those in the control group[median difference,-5.0(-9.0,-2.5)vs.-2.0(-4.0,2.0),P=0.046].No significant differences were found between groups of patients with non-Type D personality traits.The proportion of adverse events was not significantly different between groups(P=0.110).Conclusions:Breast cancer patients with Type D personalities suffer more severe negative emotions and distress,and more attention should be paid to them.VR intervention significantly and safely reduced negative emotions in patients with Type D personalities.