传统集合预报模式扰动方法通常用来描述物理过程随机误差,但模式不可避免会存在系统偏差,为了减少模式系统偏差对集合预报的影响,利用中国气象局全球集合预报系统(CMA-GEPS),通过经验正交函数(Empirical Orthogonal Function,EOF)分解...传统集合预报模式扰动方法通常用来描述物理过程随机误差,但模式不可避免会存在系统偏差,为了减少模式系统偏差对集合预报的影响,利用中国气象局全球集合预报系统(CMA-GEPS),通过经验正交函数(Empirical Orthogonal Function,EOF)分解方法获得系统偏差倾向,在积分过程中将系统偏差倾向扣除法与传统的随机物理倾向扰动法(Stochastically Perturbed Parameterization Tendency,SPPT)相结合,构建了全球集合预报系统偏差和随机误差结合的模式倾向扰动方法(Bias correction of bias tendency based on SPPT,SPPT-B),设计并开展了集合预报试验来探究该方法对全球集合预报的影响。结果显示:(1)经验正交函数分解的第一模态能较好地体现系统偏差的主要特征,即随预报时效线性增长、对流层高层的系统偏差比中、低层大。(2)系统偏差倾向扣除法和SPPT-B方法均可以有效降低南、北半球和热带地区高层和低层的系统偏差,且SPPT-B方法能明显改善热带地区集合离散度。(3)两套方案对对流层高层的集合预报技巧改进效果优于低层。SPPT-B能有效提高全球集合预报技巧,为发展同时考虑系统偏差和随机误差的全球集合预报模式扰动方法提供了科学依据。展开更多
以内蒙古中部某风电场为实验风电场,采用随机森林(Random forest,RF)方法、相似误差订正(Analogue correction of errors,ACE)方法以及概率密度匹配方法(Probability density function matching method,PDF)分别对风电场风速预报进行订...以内蒙古中部某风电场为实验风电场,采用随机森林(Random forest,RF)方法、相似误差订正(Analogue correction of errors,ACE)方法以及概率密度匹配方法(Probability density function matching method,PDF)分别对风电场风速预报进行订正及适用性研究。结果表明:3种方法在各季均对中尺度天气预报模式(Weather research and forecasting model,WRF)风速预报具有不同程度的订正效果,RF方法可以有效改善WRF误差较大的问题,但兼具误差过分放大情况,ACE方法和PDF虽然对较大误差的改善能力不及RF方法,但是能够较好地控制误差过分放大问题。此外,3种方法针对小于5 m·s^(-1)的小风速段,订正效果不理想,随着风速的增加,订正能力逐渐增强。参照预报模型各自的优势,尝试开展多种预报模型的分风速等级集成应用,可以对不同风速等级下的WRF预报起到较好的改善作用。展开更多
文摘传统集合预报模式扰动方法通常用来描述物理过程随机误差,但模式不可避免会存在系统偏差,为了减少模式系统偏差对集合预报的影响,利用中国气象局全球集合预报系统(CMA-GEPS),通过经验正交函数(Empirical Orthogonal Function,EOF)分解方法获得系统偏差倾向,在积分过程中将系统偏差倾向扣除法与传统的随机物理倾向扰动法(Stochastically Perturbed Parameterization Tendency,SPPT)相结合,构建了全球集合预报系统偏差和随机误差结合的模式倾向扰动方法(Bias correction of bias tendency based on SPPT,SPPT-B),设计并开展了集合预报试验来探究该方法对全球集合预报的影响。结果显示:(1)经验正交函数分解的第一模态能较好地体现系统偏差的主要特征,即随预报时效线性增长、对流层高层的系统偏差比中、低层大。(2)系统偏差倾向扣除法和SPPT-B方法均可以有效降低南、北半球和热带地区高层和低层的系统偏差,且SPPT-B方法能明显改善热带地区集合离散度。(3)两套方案对对流层高层的集合预报技巧改进效果优于低层。SPPT-B能有效提高全球集合预报技巧,为发展同时考虑系统偏差和随机误差的全球集合预报模式扰动方法提供了科学依据。
文摘以内蒙古中部某风电场为实验风电场,采用随机森林(Random forest,RF)方法、相似误差订正(Analogue correction of errors,ACE)方法以及概率密度匹配方法(Probability density function matching method,PDF)分别对风电场风速预报进行订正及适用性研究。结果表明:3种方法在各季均对中尺度天气预报模式(Weather research and forecasting model,WRF)风速预报具有不同程度的订正效果,RF方法可以有效改善WRF误差较大的问题,但兼具误差过分放大情况,ACE方法和PDF虽然对较大误差的改善能力不及RF方法,但是能够较好地控制误差过分放大问题。此外,3种方法针对小于5 m·s^(-1)的小风速段,订正效果不理想,随着风速的增加,订正能力逐渐增强。参照预报模型各自的优势,尝试开展多种预报模型的分风速等级集成应用,可以对不同风速等级下的WRF预报起到较好的改善作用。