目的在实时人脸跟踪过程中,因光照变化、目标被遮挡以及跟踪时间长等因素,导致的误差累积都会影响系统的整体性能。针对这些问题,提出一种融合检测和跟踪技术的方法,其中包含了检测、控制和跟踪3个模块(简称DCT)。方法在检测模块中,利用...目的在实时人脸跟踪过程中,因光照变化、目标被遮挡以及跟踪时间长等因素,导致的误差累积都会影响系统的整体性能。针对这些问题,提出一种融合检测和跟踪技术的方法,其中包含了检测、控制和跟踪3个模块(简称DCT)。方法在检测模块中,利用AdaBoost算法提取人脸的相关信息,并将信息传递给跟踪模块进行跟踪处理;在跟踪模块中,采用在线随机蕨和SURF(speeded up robust features)算法对目标进行跟踪。同时,在每次检测到目标之后,会通过控制模块对当前跟踪目标准确性进行判断。结果选取国际标准数据组并与LBP+Camshift+Kalman滤波算法、SEMI算法、TLD(tracking-learning-detection)算法比较,实验结果表明,DCT方法在目标发生尺度较大变化、目标遮挡、旋转、形变以及光照发生变化时都具有良好的跟踪识别效果,DCT方法识别准确率在95%以上,平均误识别率和漏识别率分别为0.86%和0.78%。结论 DCT方法具有消除误差累积,跟踪失败后自动恢复等特点,同时可以消除环境中光照、遮挡和仿射变换的影响并满足系统跟踪的实时性要求,运用于视频人脸跟踪系统中能够提高系统的实时性及鲁棒性。展开更多
为提高行人检测系统在红外场景中的检测率以及速度,提出一种基于人类视觉机制与ROI融合的红外行人检测方法。根据人类视觉机制来改进LoG滤波抑制背景噪声,通过对滤波后的图像应用ROI融合得到行人候选区域,使提取到的ROI更为准确。另外,...为提高行人检测系统在红外场景中的检测率以及速度,提出一种基于人类视觉机制与ROI融合的红外行人检测方法。根据人类视觉机制来改进LoG滤波抑制背景噪声,通过对滤波后的图像应用ROI融合得到行人候选区域,使提取到的ROI更为准确。另外,提出一种改进的纹理特征OCS-LBP(oriented center symmetric local binary patterns),对得到的行人候选区域提取HOG特征和OCS-LBP特征,使用随机蕨分类器来进行分类,提升检测的速度与精度。该方法通过与流行的检测算法比较,检测准确率与召回率分别提升7.9%与10.3%,且实时性有较大的提升,具有一定的研究和实用价值。展开更多
In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision,a binocular vision positioning method based on coarse-fine stereo matching is proposed to achieve object position...In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision,a binocular vision positioning method based on coarse-fine stereo matching is proposed to achieve object positioning.The random fern is used in the coarse matching to identify objects in the left and right images,and the pixel coordinates of the object center points in the two images are calculated to complete the center matching.In the fine matching,the right center point is viewed as an estimated value to set the search range of the right image,in which the region matching is implemented to find the best matched point of the left center point.Then,the similar triangle principle of the binocular vision model is used to calculate the 3D coordinates of the center point,achieving fast and accurate object positioning.Finally,the proposed method is applied to the object scene images and the robotic arm grasping platform.The experimental results show that the average absolute positioning error and average relative positioning error of the proposed method are 8.22 mm and 1.96%respectively when the object's depth distance is within 600 mm,the time consumption is less than 1.029s.The method can meet the needs of the robot grasping system,and has better accuracy and robustness.展开更多
文摘目的在实时人脸跟踪过程中,因光照变化、目标被遮挡以及跟踪时间长等因素,导致的误差累积都会影响系统的整体性能。针对这些问题,提出一种融合检测和跟踪技术的方法,其中包含了检测、控制和跟踪3个模块(简称DCT)。方法在检测模块中,利用AdaBoost算法提取人脸的相关信息,并将信息传递给跟踪模块进行跟踪处理;在跟踪模块中,采用在线随机蕨和SURF(speeded up robust features)算法对目标进行跟踪。同时,在每次检测到目标之后,会通过控制模块对当前跟踪目标准确性进行判断。结果选取国际标准数据组并与LBP+Camshift+Kalman滤波算法、SEMI算法、TLD(tracking-learning-detection)算法比较,实验结果表明,DCT方法在目标发生尺度较大变化、目标遮挡、旋转、形变以及光照发生变化时都具有良好的跟踪识别效果,DCT方法识别准确率在95%以上,平均误识别率和漏识别率分别为0.86%和0.78%。结论 DCT方法具有消除误差累积,跟踪失败后自动恢复等特点,同时可以消除环境中光照、遮挡和仿射变换的影响并满足系统跟踪的实时性要求,运用于视频人脸跟踪系统中能够提高系统的实时性及鲁棒性。
文摘为提高行人检测系统在红外场景中的检测率以及速度,提出一种基于人类视觉机制与ROI融合的红外行人检测方法。根据人类视觉机制来改进LoG滤波抑制背景噪声,通过对滤波后的图像应用ROI融合得到行人候选区域,使提取到的ROI更为准确。另外,提出一种改进的纹理特征OCS-LBP(oriented center symmetric local binary patterns),对得到的行人候选区域提取HOG特征和OCS-LBP特征,使用随机蕨分类器来进行分类,提升检测的速度与精度。该方法通过与流行的检测算法比较,检测准确率与召回率分别提升7.9%与10.3%,且实时性有较大的提升,具有一定的研究和实用价值。
基金supported by National Natural Science Foundation of China(No.61125101)。
文摘In order to improve the low positioning accuracy and execution efficiency of the robot binocular vision,a binocular vision positioning method based on coarse-fine stereo matching is proposed to achieve object positioning.The random fern is used in the coarse matching to identify objects in the left and right images,and the pixel coordinates of the object center points in the two images are calculated to complete the center matching.In the fine matching,the right center point is viewed as an estimated value to set the search range of the right image,in which the region matching is implemented to find the best matched point of the left center point.Then,the similar triangle principle of the binocular vision model is used to calculate the 3D coordinates of the center point,achieving fast and accurate object positioning.Finally,the proposed method is applied to the object scene images and the robotic arm grasping platform.The experimental results show that the average absolute positioning error and average relative positioning error of the proposed method are 8.22 mm and 1.96%respectively when the object's depth distance is within 600 mm,the time consumption is less than 1.029s.The method can meet the needs of the robot grasping system,and has better accuracy and robustness.