期刊文献+
共找到2,111篇文章
< 1 2 106 >
每页显示 20 50 100
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
1
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
基于24Model与RF算法的冰雪天气高速公路交通事故影响因素研究
2
作者 王俊诚 解学才 孙世梅 《安全》 2025年第11期55-60,共6页
为提升冰雪天气下高速公路的行车安全水平,本文融合事故致因“2-4”模型(24Model)与机器学习方法,构建事故严重程度预测模型并识别关键致因因素。首先,以全国109起冰雪天气高速公路交通事故为样本,基于24Model系统提取15项影响因素,构... 为提升冰雪天气下高速公路的行车安全水平,本文融合事故致因“2-4”模型(24Model)与机器学习方法,构建事故严重程度预测模型并识别关键致因因素。首先,以全国109起冰雪天气高速公路交通事故为样本,基于24Model系统提取15项影响因素,构建适用于机器学习的数据集;然后,对比随机森林(RF)、K近邻与BP神经网络,建立预测模型,并对最优者实施超参数搜索与交叉验证;最后,结合重要度分析,识别影响事故严重程度的关键因素。结果表明:RF模型准确率达到0.8182,且性能最稳定;组织文化缺失为首要致因,驾驶员安全意识不足、低能见度不良天气条件及大型车辆混入亦显著加剧事故严重性。可从优化低能见度路段交通标志与照明设施、完善安全管理体系等方面提出针对性改进对策,为冰雪天气高速公路安全治理提供理论依据与管理参考。 展开更多
关键词 冰雪天气 事故致因“2-4”模型(24model) 事故严重程度 随机森林算法(rf)
在线阅读 下载PDF
AI-Driven Malware Detection with VGG Feature Extraction and Artificial Rabbits Optimized Random Forest Model
3
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Wadee Alhalabi Varsha Arya Shavi Bansal Ching-Hsien Hsu 《Computers, Materials & Continua》 2025年第9期4755-4772,共18页
Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support v... Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support vector machine(SVM),as well as ensemble methods,such as Gradient Boosting and eXtreme gradient boosting(XGBoost),are often plagued by high computational costs,which makes it challenging for them to perform real-time detection.In this regard,we suggested an attack detection approach that integrates Visual Geometry Group 16(VGG16),Artificial Rabbits Optimizer(ARO),and Random Forest Model to increase detection accuracy and operational efficiency in Internet of Things(IoT)networks.In the suggested model,the extraction of features from malware pictures was accomplished with the help of VGG16.The prediction process is carried out by the random forest model using the extracted features from the VGG16.Additionally,ARO is used to improve the hyper-parameters of the random forest model of the random forest.With an accuracy of 96.36%,the suggested model outperforms the standard models in terms of accuracy,F1-score,precision,and recall.The comparative research highlights our strategy’s success,which improves performance while maintaining a lower computational cost.This method is ideal for real-time applications,but it is effective. 展开更多
关键词 Malware detection VGG feature extraction artificial rabbits OPTIMIZATION random forest model
在线阅读 下载PDF
A zenith wet delay improved model in China based on GPT3 and random forest
4
作者 Shaoni Chen Chunhua Jiang +3 位作者 Xiang Gao Huizhong Zhu Shuaimin Wang Guangsheng Liu 《Geodesy and Geodynamics》 2025年第4期403-412,共10页
Zenith wet delay(ZWD)is a key parameter for the precise positioning of global navigation satellite systems(GNSS)and occupies a central role in meteorological research.Currently,most models only consider the periodic v... Zenith wet delay(ZWD)is a key parameter for the precise positioning of global navigation satellite systems(GNSS)and occupies a central role in meteorological research.Currently,most models only consider the periodic variability of the ZWD,neglecting the effect of nonlinear factors on the ZWD estimation.This oversight results in a limited capability to reflect the rapid fluctuations of the ZWD.To more accurately capture and predict complicated variations in ZWD,this paper developed the CRZWD model by a combination of the GPT3 model and random forests(RF)algorithm using 5-year atmospheric profiles from 70 radiosonde(RS)stations across China.Taking the external 25 test stations data as reference,the root mean square(RMS)of the CRZWD model is 29.95 mm.Compared with the GPT3 model and another model using backpropagation neural network(BPNN),the accuracy has improved by 24.7%and 15.9%,respectively.Notably,over 56%of the test stations exhibit an improvement of more than 20%in contrast to GPT3-ZWD.Further temporal and spatial characteristic analyses also demonstrate the significant accuracy and stability advantages of the CRZWD model,indicating the potential prospects for GNSS-based applications. 展开更多
关键词 Zenith wet delay CRZWD model GPT3 random forest Back propagation neural network
原文传递
Landslide susceptibility assessment based on an interpretable coupled FR-RF model:A case study of Longyan City,Fujian Province,Southeast China
5
作者 Zong-yue Lu Gen-yuan Liu +5 位作者 Xi-dong Zhao Kang Sun Yan-si Chen Zhi-hong Song Kai Xue Ming-shan Yang 《China Geology》 2025年第2期281-294,共14页
To enhance the prediction accuracy of landslides in in Longyan City,China,this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information ... To enhance the prediction accuracy of landslides in in Longyan City,China,this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information System(GIS)with integrated spatial data,a frequency ratio(FR)model,and a random forest(RF)model(also referred to as the coupled FR-RF model).The coupled FR-RF model was constructed based on the analysis of nine influential factors,including distance from roads,normalized difference vegetation index(NDVI),and slope.The performance of the coupled FR-RF model was assessed using metrics such as Receiver Operating Characteristic(ROC)and Precision-Recall(PR)curves,yielding Area Under the Curve(AUC)values of 0.93 and 0.95,which indicate high predictive accuracy and reliability for geological hazard forecasting.Based on the model predictions,five susceptibility levels were determined in the study area,providing crucial spatial information for geologic hazard prevention and control.The contributions of various influential factors to landslide susceptibility were determined using SHapley Additive exPlanations(SHAP)analysis and the Gini index,enhancing the model interpretability and transparency.Additionally,this study discussed the limitations of the coupled FR-RF model and the prospects for its improvement using new technologies.This study provides an innovative method and theoretical support for geologic hazard prediction and management,holding promising prospects for application. 展开更多
关键词 Machine learning Landslide susceptibility assessment Geographic Information System(GIS) Coupled FR-rf model random forest INTERPRETABILITY SHapley Additive exPlanations Geological disater prevention engineering Longyan
在线阅读 下载PDF
Linear and Nonlinear Trading Models with Gradient Boosted Random Forests and Application to Singapore Stock Market
6
作者 Qin Qin Qing-Guo Wang +1 位作者 Jin Li Shuzhi Sam Ge 《Journal of Intelligent Learning Systems and Applications》 2013年第1期1-10,共10页
This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock pric... This paper presents new trading models for the stock market and test whether they are able to consistently generate excess returns from the Singapore Exchange (SGX). Instead of conventional ways of modeling stock prices, we construct models which relate the market indicators to a trading decision directly. Furthermore, unlike a reversal trading system or a binary system of buy and sell, we allow three modes of trades, namely, buy, sell or stand by, and the stand-by case is important as it caters to the market conditions where a model does not produce a strong signal of buy or sell. Linear trading models are firstly developed with the scoring technique which weights higher on successful indicators, as well as with the Least Squares technique which tries to match the past perfect trades with its weights. The linear models are then made adaptive by using the forgetting factor to address market changes. Because stock markets could be highly nonlinear sometimes, the Random Forest is adopted as a nonlinear trading model, and improved with Gradient Boosting to form a new technique—Gradient Boosted Random Forest. All the models are trained and evaluated on nine stocks and one index, and statistical tests such as randomness, linear and nonlinear correlations are conducted on the data to check the statistical significance of the inputs and their relation with the output before a model is trained. Our empirical results show that the proposed trading methods are able to generate excess returns compared with the buy-and-hold strategy. 展开更多
关键词 Stock modeling SCORING TECHNIQUE Least Square TECHNIQUE random FOREST GRADIENT Boosted random FOREST
暂未订购
基于RF-Informer模型的月径流遥相关预报
7
作者 李继清 谢宇韬 +1 位作者 徐学军 吴亮 《水资源保护》 北大核心 2025年第3期39-45,共7页
为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模... 为延长中长期径流预报的预见期,提高预报精度,从物理成因上考虑径流的影响因素,在前期降水径流的基础上增加遥相关因子,通过随机森林(RF)模型进行因子选择,引入长时间序列预报中表现良好的Informer模型,构建了月径流预报的RF-Informer模型,并利用该模型对雅砻江流域两河口、锦西、二滩3个水库的入库月径流进行了预报。结果表明:将遥相关因子引入流域月径流预报可以延长预见期,提高预报精度;相较于线性相关法,基于RF模型选择预报因子可以挖掘因子间非线性关系,提升预报效果;与RF-LSTM、RF-SVM、RF-BP神经网络模型相比,RF-Informer模型的误差最小,预报精度最高。 展开更多
关键词 月径流预报 遥相关因子 随机森林模型 Informer模型 雅砻江流域
在线阅读 下载PDF
基于GWO-RF的建筑施工安全事故预测模型
8
作者 王丹 潘祥莲 《中国安全科学学报》 北大核心 2025年第10期75-81,共7页
为减少建筑施工安全事故的发生,利用关联规则揭示事故关联机制,并融合优化后的随机森林(RF),预测事故发生情况。首先,以24Model为理论依据,提取388份建筑施工安全事故案例报告的致因因素;然后,采用Apriori算法挖掘事故致因因素之间的相... 为减少建筑施工安全事故的发生,利用关联规则揭示事故关联机制,并融合优化后的随机森林(RF),预测事故发生情况。首先,以24Model为理论依据,提取388份建筑施工安全事故案例报告的致因因素;然后,采用Apriori算法挖掘事故致因因素之间的相互关联作用路径;最后,利用灰狼优化算法(GWO)优化RF的超参数,构建GWO-RF建筑施工安全事故预测模型,并对事故致因因素进行特征重要性排序。结果表明:不安全行为、组织成员的安全能力、安全管理体系以及安全文化元素构成强相关条件组合;GWO能够有效优化RF的超参数,优化后建立的建筑施工安全事故预测模型(GWO-RF)预测准确率高达93.2%;特征重要性排序显示:安全教育培训对建筑施工安全事故预测的影响最大,权重为10.5%,安全融入管理、安全生产规章制度、安全生产责任制度是影响建筑施工安全事故预测的重要因素,其权重依次为7.5%、7%、6%。 展开更多
关键词 灰狼优化算法(GWO) 随机森林(rf) 建筑施工安全事故 预测模型 关联规则
原文传递
Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree,random forest and information value models 被引量:14
9
作者 CHEN Tao ZHU Li +3 位作者 NIU Rui-qing TRINDER C John PENG Ling LEI Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第3期670-685,共16页
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de... This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR. 展开更多
关键词 MAPPING LANDSLIDE SUSCEPTIBILITY Gradient BOOSTING DECISION tree random forest Information value model Three Gorges Reservoir
原文传递
DBSCAN-SMOTEENN-RF联合算法及在三维地质建模中的应用
10
作者 王桂林 陈晓玲 +1 位作者 岳佳豪 廖明勇 《地理与地理信息科学》 北大核心 2025年第3期19-26,共8页
三维地质模型可以有效表征地下地层分布和地质构造,但受限于工程钻孔数据的稀疏性、不规则性、不平衡性,单一的机器学习方法在地质建模中往往难以达到理想精度。针对工程钻孔数据的特性,该文提出一种基于DBSCAN-SMOTEENN-RF联合算法改... 三维地质模型可以有效表征地下地层分布和地质构造,但受限于工程钻孔数据的稀疏性、不规则性、不平衡性,单一的机器学习方法在地质建模中往往难以达到理想精度。针对工程钻孔数据的特性,该文提出一种基于DBSCAN-SMOTEENN-RF联合算法改进的机器学习三维建模方法。首先根据地质资料调整算法参数以优化数据,进而创建研究区栅格单元地质属性模型,并与单一随机森林(RF)模型进行预测对比,最后进行不同数据处理方法的建模结果分析。实证结果表明,DBSCAN-SMOTEENN-RF联合算法能有效消除数据不平衡现象并提升建模效果,在数据量有限或质量不均的情况下,与单一RF模型在三维地质建模中的精度相比,该算法准确率、召回率、F 1值和精确率分别提高8.38%、11.40%、10.12%、7.37%;在栅格单元地质属性模型的地层分布展示上,DBSCAN-SMOTEENN-RF模型的预测结果更符合勘察的地质情况。 展开更多
关键词 三维地质建模 机器学习 DBSCAN SMOTEENN 随机森林
在线阅读 下载PDF
基于PCA-RF预测方便米饭品质模型的建立
11
作者 周显青 康招阳 +2 位作者 韩佳静 闫会杰 冯萧雨 《河南工业大学学报(自然科学版)》 北大核心 2025年第2期87-95,共9页
为了改善方便米饭在加工过程中品质不稳定的问题,缩短产品研发周期,采用主成分分析法(PCA)对方便米饭的外观品质(L^(*)、a^(*)、b^(*)、W、孔隙率、比容)、质构特性(硬度、黏性、弹性、咀嚼性、内聚性、回复性)、感官评价(气味、色泽、... 为了改善方便米饭在加工过程中品质不稳定的问题,缩短产品研发周期,采用主成分分析法(PCA)对方便米饭的外观品质(L^(*)、a^(*)、b^(*)、W、孔隙率、比容)、质构特性(硬度、黏性、弹性、咀嚼性、内聚性、回复性)、感官评价(气味、色泽、完整性、黏性、弹性、软硬度、总分)进行降维分类处理,然后利用降维后的数据以工艺参数为输入变量,综合评分为输出变量,建立随机森林(RF)预测模型;采用均方误差(MSE)、平均绝对误差(MAE)以及决定系数(R^(2))评价回归预测模型的准确性以及模型对数据的拟合程度。结果表明:经过PCA降维后,方便米饭品质可分为优(1~<2)、良(0~<1)、中(-1~<0)、差(-2~<-1)4类;当RF算法中决策树的棵数为800,最大深度为5时,PCA-RF预测模型的预测误差最小、精度最高;PCA法降维得到的预测模型预测准确率优于LDA法;与PCA-BP、PCA-PLS和PCA-ELM预测模型相比,PCA-RF预测模型的MAE、MSE均最小,R^(2)为0.898,高于其他3种模型。所建立的PCA-RF模型预测效果好、误差小、精度高,具备较好的学习能力与泛化能力,可为方便米饭工业化生产的质量控制提供参考。 展开更多
关键词 大米 品质分析 数学建模 随机森林 PCA
在线阅读 下载PDF
Mixed-effects modeling for tree height prediction models of Oriental beech in the Hyrcanian forests 被引量:9
12
作者 Siavash Kalbi Asghar Fallah +2 位作者 Pete Bettinger Shaban Shataee Rassoul Yousefpour 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1195-1204,共10页
Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Orient... Height–diameter relationships are essential elements of forest assessment and modeling efforts.In this work,two linear and eighteen nonlinear height–diameter equations were evaluated to find a local model for Oriental beech(Fagus orientalis Lipsky) in the Hyrcanian Forest in Iran.The predictive performance of these models was first assessed by different evaluation criteria: adjusted R^2(R^2_(adj)),root mean square error(RMSE),relative RMSE(%RMSE),bias,and relative bias(%bias) criteria.The best model was selected for use as the base mixed-effects model.Random parameters for test plots were estimated with different tree selection options.Results show that the Chapman–Richards model had better predictive ability in terms of adj R^2(0.81),RMSE(3.7 m),%RMSE(12.9),bias(0.8),%Bias(2.79) than the other models.Furthermore,the calibration response,based on a selection of four trees from the sample plots,resulted in a reduction percentage for bias and RMSE of about 1.6–2.7%.Our results indicate that the calibrated model produced the most accurate results. 展开更多
关键词 random effects Tree height CALIBRATION Sangdeh forest Chapman–Richards model Oriental beech
在线阅读 下载PDF
基于WCF-RF的地质灾害敏感性评价——以左贡县为例
13
作者 张根 欧家婷 +1 位作者 央金卓玛 胡嘉乐 《高原科学研究》 2025年第1期67-77,共11页
为提高地质灾害敏感性评价的准确性和可靠性,文章以昌都市左贡县为例,提出一种结合随机森林模型(RF)与加权确定性系数模型(WCF)的地质灾害敏感性评价方法。通过层次分析法(AHP)对13个关键敏感因子进行权重计算,得到加权确定性系数值,采... 为提高地质灾害敏感性评价的准确性和可靠性,文章以昌都市左贡县为例,提出一种结合随机森林模型(RF)与加权确定性系数模型(WCF)的地质灾害敏感性评价方法。通过层次分析法(AHP)对13个关键敏感因子进行权重计算,得到加权确定性系数值,采用信息量模型(Ⅰ)和确定性系数随机森林模型(CFRF)与WCF-RF模型进行对比分析,利用ArcGIS软件对模型数据进行处理,生成了极低、低、中、高、极高5类敏感区,统计得到不同敏感区对应的地灾点密度,通过ROC曲线下的面积(AUC值)进行模型精确度验证。WCF-RF模型极高敏感区的地灾点密度为15.65处/km^(2),高于Ⅰ模型的6.92处/km^(2)和CF-RF模型的10.87处/km^(2),说明WCF-RF模型更能揭示地质灾害点的分布特征;WCF-RF模型性能最优,Ⅰ模型、CF-RF模型、WCF-RF模型的AUC值分别为80.2%、89.1%、90.7%。结果表明,WCF-RF模型在左贡县的地质灾害敏感性评价中具有较高的准确性和可靠性,能够为地质灾害预防提供参考。 展开更多
关键词 地质灾害敏感性 加权确定性系数 随机森林模型 层次分析法
在线阅读 下载PDF
Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model 被引量:3
14
作者 Yuxin Chen Weixun Yong +1 位作者 Chuanqi Li Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2507-2526,共20页
After the excavation of the roadway,the original stress balance is destroyed,resulting in the redistribution of stress and the formation of an excavation damaged zone(EDZ)around the roadway.The thickness of EDZ is the... After the excavation of the roadway,the original stress balance is destroyed,resulting in the redistribution of stress and the formation of an excavation damaged zone(EDZ)around the roadway.The thickness of EDZ is the key basis for roadway stability discrimination and support structure design,and it is of great engineering significance to accurately predict the thickness of EDZ.Considering the advantages of machine learning(ML)in dealing with high-dimensional,nonlinear problems,a hybrid prediction model based on the random forest(RF)algorithm is developed in this paper.The model used the dragonfly algorithm(DA)to optimize two hyperparameters in RF,namely mtry and ntree,and used mean absolute error(MAE),rootmean square error(RMSE),determination coefficient(R^(2)),and variance accounted for(VAF)to evaluatemodel prediction performance.A database containing 217 sets of data was collected,with embedding depth(ED),drift span(DS),surrounding rock mass strength(RMS),joint index(JI)as input variables,and the excavation damaged zone thickness(EDZT)as output variable.In addition,four classic models,back propagation neural network(BPNN),extreme learning machine(ELM),radial basis function network(RBF),and RF were compared with the DA-RF model.The results showed that the DARF mold had the best prediction performance(training set:MAE=0.1036,RMSE=0.1514,R^(2)=0.9577,VAF=94.2645;test set:MAE=0.1115,RMSE=0.1417,R^(2)=0.9423,VAF=94.0836).The results of the sensitivity analysis showed that the relative importance of each input variable was DS,ED,RMS,and JI from low to high. 展开更多
关键词 Excavation damaged zone random forest dragonfly algorithm predictive model metaheuristic optimization
在线阅读 下载PDF
Traffic flow prediction of urban road network based on LSTM-RF model 被引量:3
15
作者 ZHAO Shu-xu ZHANG Bao-hua 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期135-142,共8页
Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of meth... Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model. 展开更多
关键词 traffic flow prediction long short time memory and random forest(LSTM-rf)model random forest combination model spatial-temporal correlation
在线阅读 下载PDF
Predicting Surface Urban Heat Island in Meihekou City, China: A Combination Method of Monte Carlo and Random Forest 被引量:4
16
作者 ZHANG Yao LIU Jiafu WEN Zhuyun 《Chinese Geographical Science》 SCIE CSCD 2021年第4期659-670,共12页
Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat i... Given the rapid urbanization worldwide, Urban Heat Island(UHI) effect has been a severe issue limiting urban sustainability in both large and small cities. In order to study the spatial pattern of Surface urban heat island(SUHI) in China’s Meihekou City, a combination method of Monte Carlo and Random Forest Regression(MC-RFR) is developed to construct the relationship between landscape pattern indices and Land Surface Temperature(LST). In this method, Monte Carlo acceptance-rejection sampling was added to the bootstrap layer of RFR to ensure the sensitivity of RFR to outliners of SUHI effect. The SHUI in 2030 was predicted by using this MC-RFR and the modeled future landscape pattern by Cellular Automata and Markov combination model(CA-Markov). Results reveal that forestland can greatly alleviate the impact of SUHI effect, while reasonable construction of urban land can also slow down the rising trend of SUHI. MC-RFR performs better for characterizing the relationship between landscape pattern and LST than single RFR or Linear Regression model. By 2030, the overall SUHI effect of Meihekou will be greatly enhanced, and the center of urban development will gradually shift to the central and western regions of the city. We suggest that urban designer and managers should concentrate vegetation and disperse built-up land to weaken the SUHI in the construction of new urban areas for its sustainability. 展开更多
关键词 Monte Carlo and random Forest Regression(MC-rfR) landscape pattern surface heat island effect Cellular Automata and Markov combination model(CA-Markov)
在线阅读 下载PDF
Desertification status mapping in MuttumaWatershed by using Random Forest Model 被引量:1
17
作者 S.Dharumarajan Thomas F.A.Bishop 《Research in Cold and Arid Regions》 CSCD 2022年第1期32-42,共11页
Potential of the Random Forest Model on mapping of different desertification processes was studied in Muttuma watershed of mid-Murrumbidgee river region of New South Wales,Australia.Desertification vulnerability index... Potential of the Random Forest Model on mapping of different desertification processes was studied in Muttuma watershed of mid-Murrumbidgee river region of New South Wales,Australia.Desertification vulnerability index was developed using climate,terrain,vegetation,soil and land quality indices to identify environmentally sensitive areas for desertification.Random Forest Model(RFM)was used to predict the different desertification processes such as soil erosion,salinization and waterlogging in the watershed and the information needed to train classification algorithms was obtained from satellite imagery interpretation and ground truth data.Climatic factors(evaporation,rainfall,temperature),terrain factors(aspect,slope,slope length,steepness,and wetness index),soil properties(pH,organic carbon,clay and sand content)and vulnerability indices were used as an explanatory variable.Classification accuracy and kappa index were calculated for training and testing datasets.We recorded an overall accuracy rate of 87.7%and 72.1%for training and testing sites,respectively.We found larger discrepancies between overall accuracy rate and kappa index for testing datasets(72.2%and 27.5%,respectively)suggesting that all the classes are not predicted well.The prediction of soil erosion and no desertification process was good and poor for salinization and water-logging process.Overall,the results observed give a new idea of using the knowledge of desertification process in training areas that can be used to predict the desertification processes at unvisited areas. 展开更多
关键词 desertification processes vulnerability indices random Forest model EXTRAPOLATION
在线阅读 下载PDF
Modeling the Spatial Distribution of Soil Heavy Metals Using Random Forest Model—A Case Study of Nairobi and Thirirka Rivers’ Confluence 被引量:1
18
作者 Evans Omondi Mark Boitt 《Journal of Geographic Information System》 2020年第6期597-619,共23页
Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Senti... Modeling the spatial distribution of soil heavy metals is important in determining the safety of contaminated soils for agricultural use. This study utilized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spectral indices, and ancillary data to model the spatial distribution of heavy metals in the soils along the Nairobi River. The model was generated using the Random Forest package in R. Using R2 to assess the prediction accuracy, the Random Forest model generated satisfactory results for all the elements. It also ranked the variables in order of their importance in the overall prediction. Spectral indices were the most important variables within the rankings. From the predicted topsoil maps, there were high concentrations of Cadmium on the easterly end of the river. Cadmium is an impurity in detergents, and this section is in close proximity to the Nairobi water sewerage plant, which could be a direct source of Cadmium. Some farms had Zinc levels which were above the World Health Organization recommended limit. The Random Forest model performed satisfactorily. However, the predictions can be improved further if the spatial resolutions of the various variables are increased and through the addition of more predictor variables. 展开更多
关键词 random Forest Sentinel 2 Heavy Metals Spectral Indices Spatial modeling
在线阅读 下载PDF
基于RF和EBKRP算法的新安江流域有效土壤厚度反演 被引量:1
19
作者 王尚晓 张晓东 +6 位作者 张明 牛晓楠 周墨 唐志敏 张洁 宗乐丽 徐帅 《水土保持通报》 北大核心 2025年第1期168-177,共10页
[目的]快速、准确地获取区域有效土壤厚度,分析其空间分布特征和影响因素,为植被生长、土壤保持和粮食安全工作提供理论指导。[方法]以新安江流域为研究区,将野外调查数据、地形、岩性和气候等成土因素结合起来,采用经验贝叶斯克里金回... [目的]快速、准确地获取区域有效土壤厚度,分析其空间分布特征和影响因素,为植被生长、土壤保持和粮食安全工作提供理论指导。[方法]以新安江流域为研究区,将野外调查数据、地形、岩性和气候等成土因素结合起来,采用经验贝叶斯克里金回归预测(EBKRP)和随机森林(RF)算法,得到有效土壤厚度反演结果,并分析其与环境变量之间的关系。[结果](1)区域平均有效土壤厚度为0.2~0.3 m,城镇建设集中和人类活动密集的盆地和平原区土壤厚度较高,丘陵山地区则较低。(2)从MAE(平均绝对误差)、R^(2)(判定系数)和RMSE(均方根误差)3项精度评价指标来看,RF算法的预测结果明显优于EBKRP算法,而且更能显示出土壤厚度空间异质性分布特征,在一定程度上提高了土壤厚度数字制图的效果。(3)有效土壤厚度的估算受地形和气候变量的影响较大,它们分别占变量重要性的46.77%和18.78%。[结论] RF算法能够有效实现对区域有效土壤厚度的反演,克服了土壤厚度空间异质性的特点,相较于有限采样的模型更精确,分辨率也更高。 展开更多
关键词 有效土壤厚度 随机森林(rf) 土壤数字制图 经验贝叶斯克里金回归预测(EBKRP) 新安江流域
在线阅读 下载PDF
基于WOA-RF算法的船舶柴发配电系统故障诊断 被引量:1
20
作者 李维波 高峰 +3 位作者 肖朋 黄康政 阮道杰 高俊卓 《中国舰船研究》 北大核心 2025年第2期77-88,共12页
[目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴... [目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴发配电系统模型,采集其故障工况和正常工况的数据;然后,对收集的数据进行预处理以提取时域特征,并使用随机森林算法提取重要特征,从而减少数据维度;最后,使用WOA优化后的随机森林模型对船舶柴发配电系统运行数据进行故障识别、诊断和分类。[结果]仿真模拟试验表明:采用WOA-RF算法识别故障状态和正常状态的准确率为100%,区分12种故障类型的诊断准确率为98.26%;在原始数据集中,与9种不同算法对比,WOA-RF算法的准确率最低提升了4.86%,最高提升了34.37%;在添加10dB噪声数据后,与6种不同算法对比,WOA-RF算法的准确率最低提升了2.43%,最高提升了18.40%。[结论]基于WOA-RF算法的故障诊断方法在复杂海洋环境下展示了优异的准确性和鲁棒性,结果可为船舶电力系统故障的可靠识别提供参考。 展开更多
关键词 船舶柴发配电系统 故障分析 故障诊断 鲸鱼优化算法 随机森林算法 SIMULINK模型 特征提取
在线阅读 下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部