BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e...BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification.展开更多
Periodontitis is closely related to many systemic diseases linked by different periodontal pathogens.To unravel the relationship between periodontitis and systemic diseases,it is very important to correctly discrimina...Periodontitis is closely related to many systemic diseases linked by different periodontal pathogens.To unravel the relationship between periodontitis and systemic diseases,it is very important to correctly discriminate major periodontal pathogens.To realize convenient,effcient,and high-accuracy bacterial species classification,the authors use Raman spectroscopy combined with machine learning algorithms to distinguish three major periodontal pathogens Porphyromonas gingivalis(Pg),Fusobacterium nucleatum(Fn),and Aggregatibacter actinomycetemcomitans(Aa).The result shows that this novel method can successfully discriminate the three abovementioned periodontal pathogens.Moreover,the classification accuracies for the three categories of the original data were 94.7%at the sample level and 93.9%at the spectrum level by the machine learning algorithm extra trees.This study provides a fast,simple,and accurate method which is very beneficial to differentiate periodontal pathogens.展开更多
Cancer staging detection is important for clinician to assess the patients' status and make optimal therapy decision. In this study, the machine learning algorithm based on principal component analysis(PCA) and su...Cancer staging detection is important for clinician to assess the patients' status and make optimal therapy decision. In this study, the machine learning algorithm based on principal component analysis(PCA) and support vector machine(SVM) was combined with urine surface-enhanced Raman scattering(SERS) spectroscopy for improving the identification of colorectal cancer(CRC) at early and advanced stages. Two discriminant methods, linear discriminant analysis(LDA) and SVM were compared, and the results indicated that the diagnostic accuracy of SVM(93.65%) was superior to that of LDA(80.95%). This exploratory study demonstrated the great promise of urine SERS spectra along with PCA-SVM for facilitating more accurate detection of CRC at different stages.展开更多
Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with ...Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.展开更多
奶粉的真伪和掺伪近年来受到广泛的关注,研究一种操作便捷,能准确、快速、全面鉴定奶粉品牌并实现奶粉掺假鉴别的新方法对于奶粉的质量控制具有重要的意义。为实现奶粉的真伪鉴别,采集三种品牌奶粉贝因美、飞鹤和雀巢的拉曼光谱,并利用...奶粉的真伪和掺伪近年来受到广泛的关注,研究一种操作便捷,能准确、快速、全面鉴定奶粉品牌并实现奶粉掺假鉴别的新方法对于奶粉的质量控制具有重要的意义。为实现奶粉的真伪鉴别,采集三种品牌奶粉贝因美、飞鹤和雀巢的拉曼光谱,并利用拉曼谱图特征峰结合最近邻算法(nearest neighbor,NN)的模型对三种品牌奶粉进行识别,在10次交叉验证的基础上,平均识别率为99.56%。为实现奶粉的掺伪分析,将飞鹤奶粉与雀巢奶粉按不同质量比(0∶1,1∶3,1∶1,3∶1,1∶0)混合成五种掺伪奶粉,提取掺伪奶粉中的脂肪,采集脂肪样本的拉曼光谱,分别使用拉曼谱图特征峰结最近邻算法的模型和核主成分分析(kernel principal components analysis,KPCA)结合最近邻算法的模型对五种脂肪样本进行识别,10次交叉验证下的平均识别率分别为93.33%和98.89%,平均运算时间分别为0.085和0.104s。实验证明:特征峰结合NN的算法可以快速实现对奶粉真伪的判别,但此算法不能很好的区分掺伪奶粉;拉曼光谱-KPCA-NN模型可以为奶粉的掺伪检测提供一种简便、准确、快速的方法。展开更多
基金Supported by Beijing Hospitals Authority Youth Programme,No.QML20200505.
文摘BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification.
基金funded by the Major Program of Social Science Foundation of Tianjin Municipal Education Commission(2019JWZD53).
文摘Periodontitis is closely related to many systemic diseases linked by different periodontal pathogens.To unravel the relationship between periodontitis and systemic diseases,it is very important to correctly discriminate major periodontal pathogens.To realize convenient,effcient,and high-accuracy bacterial species classification,the authors use Raman spectroscopy combined with machine learning algorithms to distinguish three major periodontal pathogens Porphyromonas gingivalis(Pg),Fusobacterium nucleatum(Fn),and Aggregatibacter actinomycetemcomitans(Aa).The result shows that this novel method can successfully discriminate the three abovementioned periodontal pathogens.Moreover,the classification accuracies for the three categories of the original data were 94.7%at the sample level and 93.9%at the spectrum level by the machine learning algorithm extra trees.This study provides a fast,simple,and accurate method which is very beneficial to differentiate periodontal pathogens.
基金supported by the National Natural Science Foundation of China (No.61975031)the Natural Science Foundation of Fujian Province (No.2020J011121)+3 种基金the Product-University Cooperation Project of Fujian Province (No.2020Y4006)the National Clinical Key Specialty Construction Program (No.2021)the Fujian Provincial Clinical Research Center for Cancer Radiotherapy and Immunotherapy (No.2020Y2012)the Joint Funds for the Innovation of Science and Technology of Fujian Province (No.2021Y9192)。
文摘Cancer staging detection is important for clinician to assess the patients' status and make optimal therapy decision. In this study, the machine learning algorithm based on principal component analysis(PCA) and support vector machine(SVM) was combined with urine surface-enhanced Raman scattering(SERS) spectroscopy for improving the identification of colorectal cancer(CRC) at early and advanced stages. Two discriminant methods, linear discriminant analysis(LDA) and SVM were compared, and the results indicated that the diagnostic accuracy of SVM(93.65%) was superior to that of LDA(80.95%). This exploratory study demonstrated the great promise of urine SERS spectra along with PCA-SVM for facilitating more accurate detection of CRC at different stages.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2023C03116).
文摘Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.
文摘蛋白质含量是衡量稻米品质的关键因素之一。为探索利用光谱数据融合技术实现稻米蛋白质含量快速检测的潜力,试验提出了一种改进的二进制粒子群优化算法(Improved binary particle swarm optimization,IBPSO),该算法专门用于拉曼光谱与近红外光谱(R aman-NIR)融合数据的特征波长选择,能有效提升基于偏最小二乘法(Partial least squares,PLS)的回归校正模型的预测准确性。采用IBPSO构建的大米蛋白质含量检测模型,其预测决定系数(R_(p)^(2))达到了0.903,预测均方根误差(Root mean square error of prediction,RMSEP)为0.235%,预测平均相对误差(Mean relative error of prediction,MREP)则为2.768%,这些性能指标均优于采用其他4种经典算法进行特征波长选择后所建立的模型。结果表明:IBPSO通过粒子值为“1”二进制位的指导性寻优,能够实现高相关性建模波长变量的高效获取;IBPSO与光谱数据融合技术相结合能够实现大米蛋白质含量的快速检测,为相关在线检测装备的研发提供了理论支持。
文摘奶粉的真伪和掺伪近年来受到广泛的关注,研究一种操作便捷,能准确、快速、全面鉴定奶粉品牌并实现奶粉掺假鉴别的新方法对于奶粉的质量控制具有重要的意义。为实现奶粉的真伪鉴别,采集三种品牌奶粉贝因美、飞鹤和雀巢的拉曼光谱,并利用拉曼谱图特征峰结合最近邻算法(nearest neighbor,NN)的模型对三种品牌奶粉进行识别,在10次交叉验证的基础上,平均识别率为99.56%。为实现奶粉的掺伪分析,将飞鹤奶粉与雀巢奶粉按不同质量比(0∶1,1∶3,1∶1,3∶1,1∶0)混合成五种掺伪奶粉,提取掺伪奶粉中的脂肪,采集脂肪样本的拉曼光谱,分别使用拉曼谱图特征峰结最近邻算法的模型和核主成分分析(kernel principal components analysis,KPCA)结合最近邻算法的模型对五种脂肪样本进行识别,10次交叉验证下的平均识别率分别为93.33%和98.89%,平均运算时间分别为0.085和0.104s。实验证明:特征峰结合NN的算法可以快速实现对奶粉真伪的判别,但此算法不能很好的区分掺伪奶粉;拉曼光谱-KPCA-NN模型可以为奶粉的掺伪检测提供一种简便、准确、快速的方法。