In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision ...In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.展开更多
This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual cou...This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual coupling scenario.The article proposed several critical aspects,including the optimization of transmission data requirements,which is essential to ensure that communication between trains is efficient and reliable.The design of the T2T wireless communication subsystem is discussed in detail,outlining the technical specifications,protocols,and technologies employed to facilitate wireless communication between multiple trains.Additionally,the article presents a thorough analysis of the data collected during real-world train experiments,highlighting the performance metrics and challenges encountered during testing.This empirical data not only validates the effectiveness of the proposed design but also serves as a crucial reference for future advancements in T2T wireless communication systems.By combining both theoretical principles and practical outcomes,the article offers insights that will aid engineers and researchers in developing robust and efficient wireless communication systems for next-generation train operations.展开更多
Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambi...Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.展开更多
To explore the technical solution for independently-developed wireless synchronous control of locomotives based on 5G-R,this study investigates the service demands of such control and analyzes the insufficiency of the...To explore the technical solution for independently-developed wireless synchronous control of locomotives based on 5G-R,this study investigates the service demands of such control and analyzes the insufficiency of the existing communication system of China's heavy-haul railway.Giving full consideration of the high bandwidth,low delay,IP-based links,packet domain transmission,quality of service priority guarantee and other characteristics of the 5G-R network,an overall technical solution is proposed,focusing on the implementation of functions such as master-slave locomotive data transmission,controllable end-of-train data transmission,marshaling requests,and multi-driver calls.The findings contribute to enhancing the advancement of the independently-developed wireless synchronous control system of locomotives,ensuring its reliable operation in complex environments,providing valuable guidance for improving the safety and efficiency of heavy-haul railway transportation,and offering robust technical support for the modernization and intelligence development of heavy-haul railway.展开更多
In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This ...In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This paper designs and implements a Wireless Train Communication Network(WTCN)to enhance the existing train network infrastructure.To address the challenges that wireless communication technology faces in the unique environment of high-speed rail,this study first analyzes various onboard environments and simulates several typical scenarios in the laboratory.Integrating the specific application scenarios and service characteristics of the high-speed train control network,we conduct measurements and validations of WiFi performance,exploring the specific impacts of different factors on throughput and delay.展开更多
Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless commu...Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.展开更多
Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing syst...Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.展开更多
基金supported by National Natural Science Foundation of China(Nos.62161016,61661025)Gansu Provincial Science and Technology Plan(No.20JR10RA273)。
文摘In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.
基金supported by the National Key R&D Program of China(2021YFF0501103).
文摘This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual coupling scenario.The article proposed several critical aspects,including the optimization of transmission data requirements,which is essential to ensure that communication between trains is efficient and reliable.The design of the T2T wireless communication subsystem is discussed in detail,outlining the technical specifications,protocols,and technologies employed to facilitate wireless communication between multiple trains.Additionally,the article presents a thorough analysis of the data collected during real-world train experiments,highlighting the performance metrics and challenges encountered during testing.This empirical data not only validates the effectiveness of the proposed design but also serves as a crucial reference for future advancements in T2T wireless communication systems.By combining both theoretical principles and practical outcomes,the article offers insights that will aid engineers and researchers in developing robust and efficient wireless communication systems for next-generation train operations.
基金supported partially by the 973 Program under the Grant 2012CB316100
文摘Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.
文摘To explore the technical solution for independently-developed wireless synchronous control of locomotives based on 5G-R,this study investigates the service demands of such control and analyzes the insufficiency of the existing communication system of China's heavy-haul railway.Giving full consideration of the high bandwidth,low delay,IP-based links,packet domain transmission,quality of service priority guarantee and other characteristics of the 5G-R network,an overall technical solution is proposed,focusing on the implementation of functions such as master-slave locomotive data transmission,controllable end-of-train data transmission,marshaling requests,and multi-driver calls.The findings contribute to enhancing the advancement of the independently-developed wireless synchronous control system of locomotives,ensuring its reliable operation in complex environments,providing valuable guidance for improving the safety and efficiency of heavy-haul railway transportation,and offering robust technical support for the modernization and intelligence development of heavy-haul railway.
基金support from the Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications(BHRC-2024-1)Beijing Jiaotong University,the National Natural Science Foundation of China(U21A20445).
文摘In High-Speed Railways(HSRs),the Train Control and Management System(TCMS)plays a crucial role.However,as the demand for train networks grows,the limitations of traditional wired connections have become apparent.This paper designs and implements a Wireless Train Communication Network(WTCN)to enhance the existing train network infrastructure.To address the challenges that wireless communication technology faces in the unique environment of high-speed rail,this study first analyzes various onboard environments and simulates several typical scenarios in the laboratory.Integrating the specific application scenarios and service characteristics of the high-speed train control network,we conduct measurements and validations of WiFi performance,exploring the specific impacts of different factors on throughput and delay.
基金supported in part by the National Natural Science Foundations(Nos.61032002 and 61102050)the National Science and Technology Major Project(No.2011ZX03001-007-01)+1 种基金the Beijing Natural Science Foundation(No.4122061)the Fundamental Research Funds for the Central Universities(No.2012YJS005)
文摘Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.
基金supported by the National Natural Science Foundation of China(62001519)the State Key Laboratory of Advanced Rail Autonomous Operation(RCS2022ZZ004).
文摘Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.