ln order to deal with the problems of insufficient or excessive maintenance in the current maintenance activities of China transit trains,this paper develops a novel multi-component system maintenance optimization app...ln order to deal with the problems of insufficient or excessive maintenance in the current maintenance activities of China transit trains,this paper develops a novel multi-component system maintenance optimization approach based on an opportunistic correlation model.Based on the minimal reliability and failure rate change rule of each train component,the novel proposed maintenance optimization benefits from an improved opportunistic maintenance model with system structure correlation,fault correlation and reliability correlation under imperfect maintenance.Then,different maintenance modes can be determined by a proposed mainte-nance factor under the different conditions of components.Specifically,the reliability threshold of each component is also considered to optimize the maintenance cost by the system reliability and operational availability of the train.Furthermore,as the mentioned problem belongs to the NP-Hard optimization problems,a modified particle swarm optimization(PSO)with the improvement of inertia weight is proposed to cope with the optimization problem.Based on a specific case under the practical recorded failure data,the analysis shows that the proposed model and approach can effectively cut the maintenance cost.展开更多
The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the anal...The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.展开更多
The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider m...The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied.展开更多
As an important traffic mode, urban rail transit is constantly developing toward improvement in service capacity and quality. When an urban rail transit system is evaluated in terms of its service capacity, the train ...As an important traffic mode, urban rail transit is constantly developing toward improvement in service capacity and quality. When an urban rail transit system is evaluated in terms of its service capacity, the train departure capacity is an important index that can objectively reflect the service level of an urban rail transit facility. In light of the existing cellular automaton models, this paper proposes a suitable cellular automaton model to analyze the train departure capacity of urban rail transit under different variable factors and conditions. The established model can demonstrate the train operating processes by implementing the proposed sound rules, including the rules of train departure at the origin and intermediate stations, and the velocity and position updating rules. The properties of train traffic are analyzed via numerical experiments. The numerical results show that the departure capacity is negatively affected by the train departure control manner. In addition, (i) the real-time signal control can offer a higher train service frequency; (ii) the departure capacity gradually rises with the decrease in the line design speed to a limited extent; (iii) the departure capacity decreases with extension in the train length; (iv) the number of departed trains decreases as the train stop time increases; (v) the departure capacity is not affected by the section length. However, the longer the length, the worse the service quality of the urban rail transit line. The experiments show that the proposed cellular automaton model can be used to analyze the train service capacity of an urban rail transit system by performing quantitative analysis under various considered factors, conditions, and management modes.展开更多
基金funded by the Hunan Science and Technology‘Lotus Bud’Talent Support Program(Gr ant No.2022TJ-XH-009).
文摘ln order to deal with the problems of insufficient or excessive maintenance in the current maintenance activities of China transit trains,this paper develops a novel multi-component system maintenance optimization approach based on an opportunistic correlation model.Based on the minimal reliability and failure rate change rule of each train component,the novel proposed maintenance optimization benefits from an improved opportunistic maintenance model with system structure correlation,fault correlation and reliability correlation under imperfect maintenance.Then,different maintenance modes can be determined by a proposed mainte-nance factor under the different conditions of components.Specifically,the reliability threshold of each component is also considered to optimize the maintenance cost by the system reliability and operational availability of the train.Furthermore,as the mentioned problem belongs to the NP-Hard optimization problems,a modified particle swarm optimization(PSO)with the improvement of inertia weight is proposed to cope with the optimization problem.Based on a specific case under the practical recorded failure data,the analysis shows that the proposed model and approach can effectively cut the maintenance cost.
基金supported by the National Natural Science Foundation of China (No. 70901076)Research Fund for the Doctoral Program of Higher Education of China (No. 20090162120021)Natural Science Foundation of Hunan Province (No. 10JJ4046)
文摘The train plan of urban rail transit under multi-routing mode can be divided into three parts: train formation, train operation periods and corresponding train counts of each routing in each period. Based on the analysis of passen- ger's general travel expenses and operator's benefits, the constraints and objective functions are defined and the multiobjective optimization model for the train plan of urban rail transit is presented. Factors considered in the multi- objective optimization model include transport capacity, the requirements of traffic organization, corporation benefits, passenger demands, and passenger choice behavior under multi-train-routing mode. According to the characteristics of this model and practical planning experience, a three-phase solution was designed to gradually optimize the train formarion, train counts as well as operation periods. The instance of Changsha Metro Line 2 validates the feasibility and efficiency of this approach.
文摘The determination and optimization of Automatic Train Operation(ATO) control strategy is one of the most critical technologies for urban rail train operation. The practical ATO optimal control strategy must consider many goals of the train operation, such as safety, accuracy, comfort, energy saving and so on. This paper designs a set of efficient and universal multi-objective control strategy. Firstly, based on the analysis of urban rail transit and its operating environment, the multi-objective optimization model considering all the indexes of train operation is established by using multi-objective optimization theory. Secondly, Non-dominated Sorting Genetic Algorithm II(NSGA-II) is used to solve the model, and the optimal speed curve of train running is generated.Finally, the intelligent controller is designed by the combination of fuzzy controller algorithm and the predictive control algorithm, which can control and optimize the train operation in real time. Then the robustness of the control system can ensure and the requirements for multi-objective in train operation can be satisfied.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1434207)
文摘As an important traffic mode, urban rail transit is constantly developing toward improvement in service capacity and quality. When an urban rail transit system is evaluated in terms of its service capacity, the train departure capacity is an important index that can objectively reflect the service level of an urban rail transit facility. In light of the existing cellular automaton models, this paper proposes a suitable cellular automaton model to analyze the train departure capacity of urban rail transit under different variable factors and conditions. The established model can demonstrate the train operating processes by implementing the proposed sound rules, including the rules of train departure at the origin and intermediate stations, and the velocity and position updating rules. The properties of train traffic are analyzed via numerical experiments. The numerical results show that the departure capacity is negatively affected by the train departure control manner. In addition, (i) the real-time signal control can offer a higher train service frequency; (ii) the departure capacity gradually rises with the decrease in the line design speed to a limited extent; (iii) the departure capacity decreases with extension in the train length; (iv) the number of departed trains decreases as the train stop time increases; (v) the departure capacity is not affected by the section length. However, the longer the length, the worse the service quality of the urban rail transit line. The experiments show that the proposed cellular automaton model can be used to analyze the train service capacity of an urban rail transit system by performing quantitative analysis under various considered factors, conditions, and management modes.