The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,tra...The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.展开更多
Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative str...Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative structures of radiators and heat exchangers to be manufactured. The paper reviews the application of additive manufacturing in new radiators and heat exchangers. The technology of additive manufacturing boosts the development of new radiators and heat exchangers, which improves heat dissipation performance and heat exchange efficiency. This paper will provide a new idea and method for the development of radiators and heat exchangers via the application of additive manufacturing.展开更多
Structural modularization,lightweight and functional integration are the urgent devel-opment directions for next generation high-performance aeroengines.Heat concentration during aeroengine operation would lead to loc...Structural modularization,lightweight and functional integration are the urgent devel-opment directions for next generation high-performance aeroengines.Heat concentration during aeroengine operation would lead to local high temperature,which tremendously negative impacts on aeroengine structural life and performance.Therefore,the design and optimization of radiator structures are significant for the efficiency and reliability of aeroengine.The structural geometry design and layout optimization of radiators is promising to improve the heat dissipation efficiency and reduce aerodynamic loss.The purpose of this study is to investigate the state of the art and perspectives of aeroengine radiator structural design by a comprehensive literature review.The main contents involve the review on the structural design and layout optimization technologies of radiator structures,the analyses of the structural features,design theory and methods of existed radiator structures,the induction of the theory and method of different radiators structural opti-mization design,and the discussion on the application perspectives of advanced structures in aeroengine radiators,the report on the current challenges and development directions of the design of radiator structures,including smart materials,lattice structures,variable structures,advanced optimization theories and methods,heat dissipation methods and so forth.The efforts of this study are promising to support the high-performance and lightweight design of aeroengine structures besides radiators,and thermal management system.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium rad...The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium radiation in the visible range using a shock tube was studied.Experiments were conducted with a shock velocity of 4.7 km/s,using nitrogen at a pressure of 20 Pa.To address measurement difficulties associated with weak radiation,a special square section shock tube with a side length of 380 mm was utilized.A high-speed camera characterized the shock wave’s morphology,and a spectrograph and a monochromator captured the radiation.The spectra were analyzed,and the numerical spectra were compared with experimental results,showing a close match.Temperature changes behind the shock wave were obtained and compared with numerical predictions.The findings indicate that the vibrational temperatures are overestimated,while the vibrational relaxation time is likely underestimated,due to the oversimplified portrayals of the non-equilibrium relaxation process in the models.Additionally,both experimental and simulated time-resolved profiles of radiation intensity at specific wavelengths were analyzed.The gathered data aims to enhance computational fluid dynamics codes and radiation models,improving their predictive accuracy.展开更多
A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for ...A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy.展开更多
Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most...Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most studies,oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves.This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromag-netic waves on various organs.Methods:This study is a systematic review of articles chosen by searching Google Scholar,PubMed,Embase,Scopus,Web of Science,and Science Direct using the key-words‘melatonin’,‘cell phone radiation’,and‘animal model’.The search focused on articles written in English,which were reviewed and evaluated.The PRISMA process was used to review the articles chosen for the study,and the JBI checklist was used to check the quality of the reviewed articles.Results:In the final review of 11 valid quality-checked articles,the effects of me-latonin in the intervention group,the effects of electromagnetic waves in the case group,and the amount of melatonin in the chosen organ,i.e.brain,skin,eyes,testis and the kidney were thoroughly examined.The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain,the skin,the eyes,the testis,and the kidneys.Melatonin can considerably augment the anti-oxidative system of cells and protect tissues;these measurements were sig-nificantly increased in control groups.Electromagnetic waves can induce tissue atro-phy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin.Conclusion:Our review confirms that melatonin effectively protects the organs of an-imal models against electromagnetic waves.In light of this conclusion and the current world-wide use of melatonin,future studies should advance to the stages of human clinical trials.We also recommend that more research in the field of melatonin physi-ology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications result-ing from electromagnetic waves in humans.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
Auroral Kilometric Radiation (AKR) is a common radio emission,which can contribute to the magnetosphere-ionosphereatmosphere co u pling.Similar emissions have been observed in all magnetic planet magnetospheres of the...Auroral Kilometric Radiation (AKR) is a common radio emission,which can contribute to the magnetosphere-ionosphereatmosphere co u pling.Similar emissions have been observed in all magnetic planet magnetospheres of the solar system.In this study,using observations from the FAST satellite from 30 August 1996 to 9 September 2001,the distribution of AKR in altitude=500-4500 km and invariant latitude (|ILAT|)=60°-80°has been analyzed.63045 AKR samples have been identified with~48%(52%) samples on the dayside (nightside).Of considerable interest,there is a distinct MLT asymmetry with the high occurrence rate in MLT=05-08 and 18-22(02-05 and 12-17) in the northern (southern) hemisphere.The distinct MLT asymmetry is associated with the direction of Bxof the interplaneta ry magnetic field.In addition,the occurrence rate on the nightside clearly increases as the AE^(*) index increases.This study further enriches the information and understanding of AKR in the magnetosphere as well as other similar radio emissions.展开更多
Estimate of the Deterministic Neutron RBE for Radiation-induced Pseudo-Pelger Huët Cell Formation R.E.Goans1,2,C.J.Iddins1,R.E.Goans,Jr.3(1.Radiation Emergency Assistance Center/Training Site,Oak Ridge,TN;2.MJW C...Estimate of the Deterministic Neutron RBE for Radiation-induced Pseudo-Pelger Huët Cell Formation R.E.Goans1,2,C.J.Iddins1,R.E.Goans,Jr.3(1.Radiation Emergency Assistance Center/Training Site,Oak Ridge,TN;2.MJW Corporation,Amherst,NY;3.LMU Debusk School of Medicine,Harrogate,TN)Abstract:Using archival peripheral blood slides from radiation accident patients,we have recently described the pseudo-Pelger Huët anomaly(PPHA)in neutrophils as a new radiation-induced biomarker,useful for dosimetry not only immediately after a radiation incident but also potentially helpful as a tool in retrospective dosimetry.展开更多
Protecting Our Own:A Method for Reducing Breast Radiation Exposure in Healthcare Workers Lauren Zammerilla Westcott1, Gerald O. Ogola2, Chet R. Rees3(1. Department of Surgery, Baylor University Medical Center, Dallas,...Protecting Our Own:A Method for Reducing Breast Radiation Exposure in Healthcare Workers Lauren Zammerilla Westcott1, Gerald O. Ogola2, Chet R. Rees3(1. Department of Surgery, Baylor University Medical Center, Dallas, TX;2. Department of Biostatistics, Baylor University Medical Center, Dallas, TX;3. Department of Interventional Radiology, Baylor University Medical Center, Dallas, TX).展开更多
In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which enca...In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which encapsulates high-performance technology for the numerical simulation of complex applications.Two serial codes,radiation hydrodynamics RH2D and particle transport Sn2D,have been integrated into RHSn2D on JASMIN infrastructure,which can efficiently use thousands of processors to simulate the complex multi-physics phenomena.Moreover,the non-conforming processors strategy has ensured RHSn2D against the serious load imbalance between radiation hydrodynamics and particle transport for large scale parallel simulations.Numerical results show that RHSn2D achieves a parallel efficiency of 17.1%using 90720 cells on 8192 processors compared with 256 processors in the same problem.展开更多
multi-component reaction was reported for the synthesis of 7-ester indoles and bis-indoles under microwave-assisted conditions,enriching and expanding the library of heterocyclic compounds.This reaction started from e...multi-component reaction was reported for the synthesis of 7-ester indoles and bis-indoles under microwave-assisted conditions,enriching and expanding the library of heterocyclic compounds.This reaction started from enamine ketone,aromatic ketone aldehyde hydrate,and carboxylic acid,and selectively synthesized 7-ester indoles and bis-indoles by changing the substituted enamine ketone substrate.This method had the characteristics of high regional selectivity,short reaction time,and green environmental protection.展开更多
As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude redu...As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.展开更多
The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of ma...The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.展开更多
Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'...Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'-Milic'1(1. Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3;2. Autonomous and Radiological Technologies Section, Defense Research and Development Canada, PO Box 4000 Stn Main,Medicine Hat, Alberta, T1A 8K6).展开更多
This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low ...This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.展开更多
The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and...The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria.展开更多
Bone marrow serves as the life-long home for hemato-poietic stem cells(HSCs)and is the most radio-sensitive organ^([1]).Acute ionizing radiation exceeding 1 Gray(Gy)causes severe damage in bone marrow while no effecti...Bone marrow serves as the life-long home for hemato-poietic stem cells(HSCs)and is the most radio-sensitive organ^([1]).Acute ionizing radiation exceeding 1 Gray(Gy)causes severe damage in bone marrow while no effective drug has been approved in clinical.In a recent work pub-lished in MedComm,Gao and her team reported,for the first time,cannabidiol(CBD)as an outstanding radioprotection agent targeting acute radiation-induced hematopoietic injury^([2]).Within two weeks post radiation,CBD can pro-mote the stemness of hematopoietic stem cells to a regular level.Using single-cell RNA sequencing(scRNA-seq)and functional assay,the authors decoded molecular changes underlying radiation-induced damage and CBD-induced recovery in HSCs.展开更多
Introduction: The use of radioactive radiations in healthcare facilities must comply with radioprotection safety rules in order to avoid threatening the health of workers and patients. This study aimed to assess the w...Introduction: The use of radioactive radiations in healthcare facilities must comply with radioprotection safety rules in order to avoid threatening the health of workers and patients. This study aimed to assess the working conditions, the protective measures and the medical monitoring of workers directly involved in X-ray work at hospitals in Douala, Cameroon. Materials and Methods: A descriptive cross-sectional study was carried out during the 1st quarter of 2018, across various state and private health facilities of the city of Douala. Sampling was non-random, based on convenience and all the willing participants that fulfilled the inclusion criteria were enrolled. Quantitative analyses were conducted using EPI INFO 7.0 software and the results were presented in both univariate and bivariate forms. Results: The sample consisted of 56 men and 31 women with a mean age of 34.75 ± 8.77 years. X-ray technicians were over-represented (41.38%). Day/night shift work was the main work pattern (68.96%). The distribution of work zones A&B was known by 87.5% of the participants. Hazard warning signs were effective in work zones A and B (75.86%), and the walls of the premises were also reinforced in these work zones (88.51%), but the use of radiation dosimeters was rare (9.20%). Radiation aprons (94.30%) and hand-held dosimeters (63.20%) were the most commonly used personal protective equipment. The majority of the participants did not benefit from medical follow-up by an occupational health specialist (62.1%). Conclusion: The implementation of radiation protection measures remains a significant concern in Douala based health facilities, and requires stricter administrative controls and sanctions to prevent serious health consequences for exposed staff.展开更多
文摘The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.
文摘Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative structures of radiators and heat exchangers to be manufactured. The paper reviews the application of additive manufacturing in new radiators and heat exchangers. The technology of additive manufacturing boosts the development of new radiators and heat exchangers, which improves heat dissipation performance and heat exchange efficiency. This paper will provide a new idea and method for the development of radiators and heat exchangers via the application of additive manufacturing.
基金National Natural Science Foundation of China (Grant No.52375237)National Science and Technology Major Project (Grant No.J2022-IV-0012)+1 种基金Opening Project of the Key Laboratory of CNC Equipment Reliability,Ministry of Education,Jilin University (Grant No.JLU-cncr-202402)Research Grants Council of the Hong Kong SAR of China (Grant No.PolyU 15209520).
文摘Structural modularization,lightweight and functional integration are the urgent devel-opment directions for next generation high-performance aeroengines.Heat concentration during aeroengine operation would lead to local high temperature,which tremendously negative impacts on aeroengine structural life and performance.Therefore,the design and optimization of radiator structures are significant for the efficiency and reliability of aeroengine.The structural geometry design and layout optimization of radiators is promising to improve the heat dissipation efficiency and reduce aerodynamic loss.The purpose of this study is to investigate the state of the art and perspectives of aeroengine radiator structural design by a comprehensive literature review.The main contents involve the review on the structural design and layout optimization technologies of radiator structures,the analyses of the structural features,design theory and methods of existed radiator structures,the induction of the theory and method of different radiators structural opti-mization design,and the discussion on the application perspectives of advanced structures in aeroengine radiators,the report on the current challenges and development directions of the design of radiator structures,including smart materials,lattice structures,variable structures,advanced optimization theories and methods,heat dissipation methods and so forth.The efforts of this study are promising to support the high-performance and lightweight design of aeroengine structures besides radiators,and thermal management system.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060004)the National Natural Science Foundation of China(Grant Nos.12072355 and 92271117)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620202).
文摘The thermochemical non-equilibrium phenomena encountered by hypersonic vehicles present significant challenges in their design.To investigate the thermochemical reaction flow behind shock waves,the non-equilibrium radiation in the visible range using a shock tube was studied.Experiments were conducted with a shock velocity of 4.7 km/s,using nitrogen at a pressure of 20 Pa.To address measurement difficulties associated with weak radiation,a special square section shock tube with a side length of 380 mm was utilized.A high-speed camera characterized the shock wave’s morphology,and a spectrograph and a monochromator captured the radiation.The spectra were analyzed,and the numerical spectra were compared with experimental results,showing a close match.Temperature changes behind the shock wave were obtained and compared with numerical predictions.The findings indicate that the vibrational temperatures are overestimated,while the vibrational relaxation time is likely underestimated,due to the oversimplified portrayals of the non-equilibrium relaxation process in the models.Additionally,both experimental and simulated time-resolved profiles of radiation intensity at specific wavelengths were analyzed.The gathered data aims to enhance computational fluid dynamics codes and radiation models,improving their predictive accuracy.
基金supported by the National Natural Science Foundation of China(No.U2067212)the National Science Fund for Distinguished Young Scholars(No.21925603).
文摘A sp^(2) carbon-conjugated covalent organic framework (BDATN) was modified through γ-ray radiation reduction and subsequent acidification with hydrochloric acid to yield a novel functional COF (named rBDATN-HCl) for Cr(Ⅵ) removal.The morphology and structure of rBDATN-HCl were analyzed and identified by SEM,FTIR,XRD and solid-state13C NMR.It is found that the active functional groups,such as hydroxyl and amide,were introduced into BDATN after radiation reduction and acidification.The prepared rBDATN-HCl demonstrates a photocatalytic reduction removal rate of Cr(Ⅵ) above 99%after 60min of illumination with a solid-liquid ratio of 0.5 mg/mL,showing outstanding performance,which is attributed to the increase of dispersibility and adsorption sites of r BDATN-HCl.In comparison to the cBDATN-HCl synthesized with chemical reduction,rBDATN-HCl exhibits a better photoreduction performance for Cr(Ⅵ),demonstrating the advantages of radiation preparation of rBDATN-HCl.It is expected that more functionalized sp^(2) carbon-conjugated COFs could be obtained by this radiation-induced reduction strategy.
基金Deputy for Research and Technology,Kermanshah University of Medical Sciences,Grant/Award Number:4030031。
文摘Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most studies,oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves.This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromag-netic waves on various organs.Methods:This study is a systematic review of articles chosen by searching Google Scholar,PubMed,Embase,Scopus,Web of Science,and Science Direct using the key-words‘melatonin’,‘cell phone radiation’,and‘animal model’.The search focused on articles written in English,which were reviewed and evaluated.The PRISMA process was used to review the articles chosen for the study,and the JBI checklist was used to check the quality of the reviewed articles.Results:In the final review of 11 valid quality-checked articles,the effects of me-latonin in the intervention group,the effects of electromagnetic waves in the case group,and the amount of melatonin in the chosen organ,i.e.brain,skin,eyes,testis and the kidney were thoroughly examined.The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain,the skin,the eyes,the testis,and the kidneys.Melatonin can considerably augment the anti-oxidative system of cells and protect tissues;these measurements were sig-nificantly increased in control groups.Electromagnetic waves can induce tissue atro-phy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin.Conclusion:Our review confirms that melatonin effectively protects the organs of an-imal models against electromagnetic waves.In light of this conclusion and the current world-wide use of melatonin,future studies should advance to the stages of human clinical trials.We also recommend that more research in the field of melatonin physi-ology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications result-ing from electromagnetic waves in humans.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
基金supported by the National Natural Science Foundation of China grants 42230209,42374215,42304183,72342001,71931003 and 72061147004the Scientific Research Fund of Hunan Provincial Education Department grants 21A0212the Science and Technology Innovation Program of Hunan Province under Grants 2022RC4025,2023JJ50312,2023JJ50010.
文摘Auroral Kilometric Radiation (AKR) is a common radio emission,which can contribute to the magnetosphere-ionosphereatmosphere co u pling.Similar emissions have been observed in all magnetic planet magnetospheres of the solar system.In this study,using observations from the FAST satellite from 30 August 1996 to 9 September 2001,the distribution of AKR in altitude=500-4500 km and invariant latitude (|ILAT|)=60°-80°has been analyzed.63045 AKR samples have been identified with~48%(52%) samples on the dayside (nightside).Of considerable interest,there is a distinct MLT asymmetry with the high occurrence rate in MLT=05-08 and 18-22(02-05 and 12-17) in the northern (southern) hemisphere.The distinct MLT asymmetry is associated with the direction of Bxof the interplaneta ry magnetic field.In addition,the occurrence rate on the nightside clearly increases as the AE^(*) index increases.This study further enriches the information and understanding of AKR in the magnetosphere as well as other similar radio emissions.
文摘Estimate of the Deterministic Neutron RBE for Radiation-induced Pseudo-Pelger Huët Cell Formation R.E.Goans1,2,C.J.Iddins1,R.E.Goans,Jr.3(1.Radiation Emergency Assistance Center/Training Site,Oak Ridge,TN;2.MJW Corporation,Amherst,NY;3.LMU Debusk School of Medicine,Harrogate,TN)Abstract:Using archival peripheral blood slides from radiation accident patients,we have recently described the pseudo-Pelger Huët anomaly(PPHA)in neutrophils as a new radiation-induced biomarker,useful for dosimetry not only immediately after a radiation incident but also potentially helpful as a tool in retrospective dosimetry.
文摘Protecting Our Own:A Method for Reducing Breast Radiation Exposure in Healthcare Workers Lauren Zammerilla Westcott1, Gerald O. Ogola2, Chet R. Rees3(1. Department of Surgery, Baylor University Medical Center, Dallas, TX;2. Department of Biostatistics, Baylor University Medical Center, Dallas, TX;3. Department of Interventional Radiology, Baylor University Medical Center, Dallas, TX).
基金National Natural Science Foundation of China(12471367)。
文摘In this work,we present a parallel implementation of radiation hydrodynamics coupled with particle transport,utilizing software infrastructure JASMIN(J Adaptive Structured Meshes applications INfrastructure)which encapsulates high-performance technology for the numerical simulation of complex applications.Two serial codes,radiation hydrodynamics RH2D and particle transport Sn2D,have been integrated into RHSn2D on JASMIN infrastructure,which can efficiently use thousands of processors to simulate the complex multi-physics phenomena.Moreover,the non-conforming processors strategy has ensured RHSn2D against the serious load imbalance between radiation hydrodynamics and particle transport for large scale parallel simulations.Numerical results show that RHSn2D achieves a parallel efficiency of 17.1%using 90720 cells on 8192 processors compared with 256 processors in the same problem.
文摘multi-component reaction was reported for the synthesis of 7-ester indoles and bis-indoles under microwave-assisted conditions,enriching and expanding the library of heterocyclic compounds.This reaction started from enamine ketone,aromatic ketone aldehyde hydrate,and carboxylic acid,and selectively synthesized 7-ester indoles and bis-indoles by changing the substituted enamine ketone substrate.This method had the characteristics of high regional selectivity,short reaction time,and green environmental protection.
文摘As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.
文摘The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.
文摘Evaluation of a Commercially Available Radiochromic Film for Use as a Complementary Dosimeter for Rapid In-field Low Photon Equivalent Radiation Dose (≤50 mSv) Monitoring Nicky Nivi1, Helen Moise1,2, Ana Pejovic'-Milic'1(1. Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3;2. Autonomous and Radiological Technologies Section, Defense Research and Development Canada, PO Box 4000 Stn Main,Medicine Hat, Alberta, T1A 8K6).
基金Support by the Fundamental Research Funds for the Central Universities(2024300443)the National Natural Science Foundation of China(NSFC)Young Scientists Fund(62405131)。
文摘This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.
文摘The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria.
文摘Bone marrow serves as the life-long home for hemato-poietic stem cells(HSCs)and is the most radio-sensitive organ^([1]).Acute ionizing radiation exceeding 1 Gray(Gy)causes severe damage in bone marrow while no effective drug has been approved in clinical.In a recent work pub-lished in MedComm,Gao and her team reported,for the first time,cannabidiol(CBD)as an outstanding radioprotection agent targeting acute radiation-induced hematopoietic injury^([2]).Within two weeks post radiation,CBD can pro-mote the stemness of hematopoietic stem cells to a regular level.Using single-cell RNA sequencing(scRNA-seq)and functional assay,the authors decoded molecular changes underlying radiation-induced damage and CBD-induced recovery in HSCs.
文摘Introduction: The use of radioactive radiations in healthcare facilities must comply with radioprotection safety rules in order to avoid threatening the health of workers and patients. This study aimed to assess the working conditions, the protective measures and the medical monitoring of workers directly involved in X-ray work at hospitals in Douala, Cameroon. Materials and Methods: A descriptive cross-sectional study was carried out during the 1st quarter of 2018, across various state and private health facilities of the city of Douala. Sampling was non-random, based on convenience and all the willing participants that fulfilled the inclusion criteria were enrolled. Quantitative analyses were conducted using EPI INFO 7.0 software and the results were presented in both univariate and bivariate forms. Results: The sample consisted of 56 men and 31 women with a mean age of 34.75 ± 8.77 years. X-ray technicians were over-represented (41.38%). Day/night shift work was the main work pattern (68.96%). The distribution of work zones A&B was known by 87.5% of the participants. Hazard warning signs were effective in work zones A and B (75.86%), and the walls of the premises were also reinforced in these work zones (88.51%), but the use of radiation dosimeters was rare (9.20%). Radiation aprons (94.30%) and hand-held dosimeters (63.20%) were the most commonly used personal protective equipment. The majority of the participants did not benefit from medical follow-up by an occupational health specialist (62.1%). Conclusion: The implementation of radiation protection measures remains a significant concern in Douala based health facilities, and requires stricter administrative controls and sanctions to prevent serious health consequences for exposed staff.