期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Radiation efficiency and energy distribution from a borehole dipole source in the vertical transverse isotropic formation
1
作者 Xi-Hao Gu Fan-Tong Kong +1 位作者 Yuan-Da Su Xiao-Ming Tang 《Petroleum Science》 CSCD 2024年第6期4034-4051,共18页
Dipole Shear-Wave Reflection Survey(DSRS)has gained wide application in identifying unconventional reservoirs in anisotropic formations.Previous investigations have illuminated how boreholes complicate the distributio... Dipole Shear-Wave Reflection Survey(DSRS)has gained wide application in identifying unconventional reservoirs in anisotropic formations.Previous investigations have illuminated how boreholes complicate the distribution of acoustic energy.However,these models have not accounted for the anisotropic context,rendering them insufficient for analyzing acoustic energy distribution and radiation efficiency in anisotropic formations.We derive expressions for energy flux and radiation efficiency from a borehole dipole source in the vertical-transverse isotropic(VTI)media using the Umov-Poynting vector and steepest-descent solution.Utilizing this approach,we systematically evaluate the sensitivity of anisotropic parameters to energy flux and radiation efficiency,unveiling intricate variations of these properties across frequency and anisotropic parameters.Our findings emphasize the substantial influence of formation anisotropy on energy distribution from a dipole source inside the borehole.Due to energy conversion between wave modes,five radiation wave modes are elicited by the dipole source,with the SH wave retaining its status as the prime candidate for DSRS in fast formations owing to its elevated radiation efficiency.Conversely,the qP-qP wave exhibits advantages over S waves in unconsolidated formations.A key distinction between isotropic and anisotropic media is the presence of dominant excitation frequencies in the low-frequency domain.The significance of dominant excitation-frequency bands is validated by field data,emphasizing their pivotal role.These results offer valuable insights for designing DSRS measurement strategies,which have broad application expectations for unconventional oil and gas exploration. 展开更多
关键词 Dipole source Shear-wave reflection survey Anisotropic formation Energy flux radiation efficiency
原文传递
Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency
2
作者 Xiaoxia Guo Wanmao Liu +6 位作者 Yunshan Yang Guangzhou Liu Bo Ming Ruizhi Xie Keru Wang Shaokun Li Peng Hou 《Journal of Integrative Agriculture》 2025年第4期1424-1435,共12页
The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop pro... The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future. 展开更多
关键词 MAIZE canopy N distribution canopy light distribution radiation use efficiency
在线阅读 下载PDF
Effect of Nitrogen Regimes on Grain Yield,Nitrogen Utilization,Radiation Use Efficiency,and Sheath Blight Disease Intensity in Super Hybrid Rice 被引量:13
3
作者 LI Di-qin TANG Qi-yuan +6 位作者 ZHANG Yun-bo QIN Jian-quan LI Hu CHEN Li-jun YANG Sheng-hai ZOU Ying-bin PENG Shao-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期134-143,共10页
Poor nitrogen use efficiency in rice production is a critical issue in China. Site-specific N managements (SSNM) such as real-time N management (RTNM) and fixed-time adjustable-dose N management (FTNM) improve f... Poor nitrogen use efficiency in rice production is a critical issue in China. Site-specific N managements (SSNM) such as real-time N management (RTNM) and fixed-time adjustable-dose N management (FTNM) improve fertilizer-N use efficiency of irrigated rice. This study was aimed to compare the different nitrogen (N) rates and application methods (FFP, SSNM, and RTNM methods) under with- and without-fungicide application conditions on grain yield, yield components, solar radiation use efficiency (RUE), agronomic-nitrogen use efficiency (AEN), and sheath blight disease intensity. Field experiments were carried out at Liuyang County, Hunan Province, China, during 2006 and 2007. A super hybrid rice Liangyou 293 (LY293) was used as experimental material. The results showed that RTNM and SSNM have great potential for improving agronomic-nitrogen use efficiency without sacrificing the grain yield. There were significant differences in light interception rate, sheath blight disease incidence (DI) and the disease index (ShBI), and total dry matter among the different nitrogen management methods. The radiation use efficiency was increased in a certain level of applied N. But, the harvest index (HI) decreased with the increase in applied N. There is a quadratic curve relationship between grain yield and applied N rates. With the same N fertilizer rate, different fertilizer-N application methods affected the RUE and grain yield. The fungicide application not only improved the canopy light interception rate, RUE, grain filling, and harvest index, but also reduced the degree of sheath blight disease. The treatment of RTNM under the SPAD threshold value 40 obtained the highest yield. While the treatment of SSNM led to the highest nitrogen agronomic efficiency and higher rice yield, and decreased the infestation of sheath blight disease dramatically as well. Nitrogen application regimes and diseases control in rice caused obvious effects on light interception rate, RUE, and HI. Optimal N rate is helpful to get higher light interception rate, RUE, and HI. Disease control with fungicide application decreased and delayed the negative effects of the high N on rice yield formation. SSNM and RTNM under the proper SPAD threshold value obtained high-yield with high efficiency and could alleviate environmental pollution in rice production. 展开更多
关键词 super hybrid rice real-time N management fixed-time adjustable-does N management grain yield sheath blight radiation use efficiency agronomic-nitrogen use efficiency
在线阅读 下载PDF
Nitrogen Nutrition Index and Its Relationship with N Use Efficiency, Tuber Yield, Radiation Use Effi ciency, and Leaf Parameters in Potatoes 被引量:7
4
作者 HU Da-wei SUN Zhou-ping +2 位作者 LI Tian-lai YAN Hong-zhi ZHANG Hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第5期1008-1016,共9页
Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to dete... Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of 展开更多
关键词 POTATO nitrogen nutrition index N use efficiency tuber yield radiation use efficiency leaf parameters
在线阅读 下载PDF
Assessing the yield difference of double-cropping rice in South China driven by radiation use efficiency
5
作者 Jian Lu Sicheng Deng +6 位作者 Muhammad Imran Jingyin Xie Yuanyuan Li Jianying Qi Shenggang Pan Xiangru Tang Meiyang Duan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第11期3692-3705,共14页
Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important dete... Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important determinant of grain yield in many cereal species.However,there is no information on whether the yield gaps in doublecropping rice involve differences in RUE.Field experiments were performed over two years to evaluate the effects of intercepted radiation(IP)and RUE on the above-ground biomass production,crop growth rate(CGR),and harvest index(HI),in four representative rice varieties,i.e.,Xiangyaxiangzhan(XYXZ),Meixiangzhan 2(MXZ2),Nanjingxiangzhan(NJXZ),and Ruanhuayoujinsi(RHYJS),during the early and late seasons of rice cultivation in South China.The results revealed that grain yield in the early season was 8.2%higher than in the late season.The yield advantage in the early season was primarily due to higher spikelets per panicle and above-ground biomass resulting from a higher RUE.The spikelets per panicle in the early season were 6.5,8.3,6.9,and 8.5%higher in XYXZ,MXZ2,NJXZ,and RHYJS,respectively,than in the late season.The higher early season grain yield was more closely related to RUE in the middle tillering stage(R^(2)=0.34),panicle initiation(R^(2)=0.16),and maturation stage(R^(2)=0.28),and the intercepted photosynthetically active radiation(IPAR)in the maturation stage(R^(2)=0.28),while the late season grain yield was more dependent on IPAR in the middle tillering stage(R^(2)=0.31)and IPAR at panicle initiation(R^(2)=0.23).The results of this study conclusively show that higher RUE contributes to the yield progress of early season rice,while the yield improvement of late season rice is attributed to higher radiation during the early reproductive stage.Rationally allocating the RUE of double-cropping rice with high RUE varieties or adjustments of the sowing period merits further study. 展开更多
关键词 grain yield radiation use efficiency double-cropping rice
在线阅读 下载PDF
Biochar Application Enhanced Post-Heading Radiation Use Efficiency in Field-Grown Rice (Oryza sativa L.)
6
作者 Xiaohong Yin Zui Tao +3 位作者 Jiana Chen Fangbo Cao Min Huang Yingbin Zou 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第2期415-422,共8页
It has been shown that adding biochar to soil can improve nitrogen(N)uptake and utilization in rice(Oryza sativa L.).However,there is a lack of research on the physiological alterations of rice as a result of the chan... It has been shown that adding biochar to soil can improve nitrogen(N)uptake and utilization in rice(Oryza sativa L.).However,there is a lack of research on the physiological alterations of rice as a result of the changes in nitrogen uptake due to the addition of biochar.This study conducted field experiments in 2015 and 2016 with the goal of testing the hypothesis that the application of biochar would enhance radiation use efficiency(RUE)of rice by improving the plant’s ability to take in and utilize nitrogen.Our results demonstrated that the application of biochar(20 t ha−1)induced no significant effects on pre-heading specific leaf weight(SLW),nitrogen uptake(NUpre),and leaf area index(LAI)at heading,the ratios of LAI/NUpre and SLW/Nupre,or pre-heading RUE.How-ever,biochar application significantly increased post-heading nitrogen uptake(NUpost),ratios of NUpost/SLWand NUpost/LAI,and post-heading RUE.These results indicate that the application of biochar can improve the plant’s nitrogen uptake and RUE in field-grown rice during the post-heading period,which confirms our hypothesis. 展开更多
关键词 BIOCHAR nitrogen uptake radiation use efficiency RICE
在线阅读 下载PDF
Numerical Simulation of the Discharge Efficiency in Five-electrode AC PDP 被引量:1
7
作者 何锋 李永东 +1 位作者 刘纯亮 孙鉴 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第2期2228-2232,共5页
A new type of AC PDP(alternating current plasma display panel) cell with a five-electrode structure is developed to improve the luminous efficiency of AC PDP.The discharge efficiency of this new cell structure is inve... A new type of AC PDP(alternating current plasma display panel) cell with a five-electrode structure is developed to improve the luminous efficiency of AC PDP.The discharge efficiency of this new cell structure is investigated by a 2D fluid simulation. Continuity equations and flux density equations for charged particles and excited atoms, energy balance equation for electrons are included in the model. The discharge gas is He+5%Xe. The reactions of ionization, excitation, recombination, and radiation are taken into account. The vacuum ultraviolet radiation efficiency of the five-electrode cell structure is about 20% higher than that of a conventional three-electrode cell structure. 展开更多
关键词 plasma display panel fluid model numerical simulation vacuum ultraviolet radiation efficiency.
在线阅读 下载PDF
Precision Improvement of the Discrete Calculation Method for Sound Radiation Research
8
作者 罗智 郝志勇 郑旭 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第4期415-419,共5页
Sound radiation of thin plates is a common problem in engineering. Hashimoto proposed the discrete calculation method(DCM) to deal with the problem. The calculation of the radiation impedance of the rectangular elemen... Sound radiation of thin plates is a common problem in engineering. Hashimoto proposed the discrete calculation method(DCM) to deal with the problem. The calculation of the radiation impedance of the rectangular element is more cumbersome than that of the circular one, so the discrete rectangular radiation element is approximated by the circular one. However, error is also introduced. The formula developed by Sha has been employed to get self- and mutual-radiation impedances of rectangular radiation element. Numerical study was performed to verify error introduced by the approximation Hashimoto adopted. Experimental researches on sound radiation of a 2 mm-thick and a 4 mm-thick magnesium alloy plates were also carried out to evaluate the errors introduced by the approximation. The experimental results indicate that the circular approximation Hashimoto adopted overestimates the sound radiation efficiency. The maximum error levels of the radiation efficiencies of the2 mm-thick and 4 mm-thick magnesium alloy plates are up to 0.15 and 0.12, respectively. The effect of element aspect ratio on the sound radiation efficiency is also remarkable. 展开更多
关键词 discrete calculation method radiation impedance sound radiation efficiency sound radiation power
原文传递
Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China 被引量:4
9
作者 SU Zheng-e LIU Zhi-juan +6 位作者 BAI Fan ZHANG Zhen-tao SUN Shuang HUANG Qiu-wan LIU Tao LIU Xiao-qing YANG Xiao-guang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期371-382,共12页
Northeast China (NEC) is one of the major maize production areas in China.Agro-climatic resources have obviously changed,which will seriously affect crop growth and development in this region.It is important to invest... Northeast China (NEC) is one of the major maize production areas in China.Agro-climatic resources have obviously changed,which will seriously affect crop growth and development in this region.It is important to investigate the contribution of climate change adaptation measures to the yield and resource use efficiency to improve our understanding of how we can effectively ensure high yield and high efficiency in the future.In this study,we divided the study area into five accumulated temperature zones (ATZs) based on growing degree days (GDD).Based on the meteorological data,maize data (from agrometeorological stations) and the validated APSIM-Maize Model,we first investigated the spatial distributions and temporal trends of maize potential yield of actual planted cultivars,and revealed the radiation use efficiency (RUE) and heat resource use efficiency (HUE) from 1981 to 2017.Then according to the potential growing seasons and actual growing seasons,we identified the utilization percentages of radiation (P_R) resource and heat resource (P_H) for each ATZ under potential production from 1981 to 2017.Finally,we quantified the contributions of cultivar changings to yield,P_R and P_H of maize.The results showed that during the past 37 years,the estimated mean potential yield of actual planted cultivars was 13 649 kg ha^(–1),ranged from 11 205 to 15 257 kg ha^(–1),and increased by 140 kg ha^(–1) per decade.For potential production,the mean values of RUE and HUE for the actual planted maize cultivars were 1.22 g MJ^(–1) and 8.58 kg (℃ d)^(–1) ha^(–1).RUE showed an increasing tendency,while HUE showed a decreasing tendency.The lengths of the potential growing season and actual growing season were 158 and 123 d,and increased by 2 and 1 d per decade.P_R and P_H under potential production were 82 and 86%,respectively and showed a decreasing tendency during the past 37 years.This indicates that actual planted cultivars failed to make full use of climate resources.However,results from the adaptation assessments indicate that,adoption of cultivars with growing season increased by 2–11 d among ATZs caused increase in yield,P_R and P_H of 0.6–1.7%,1.1–7.6% and 1.5–8.9%,respectively.Therefore,introduction of cultivars with longer growing season can effectively increase the radiation and heat utilization percentages and potential yield. 展开更多
关键词 APSIM maize potential yield radiation use efficiency resource utilization percentage cultivar selection
在线阅读 下载PDF
Optimizing planting density to improve growth,yield and resource use efficiencies for winter oilseed rape under ridge-furrow film mulching
10
作者 Xiaobo Gu Zhikai Cheng +5 位作者 Yadan Du Huanjie Cai Yupeng Li Yuannong Li Heng Fang Shikun Sun 《Journal of Integrative Agriculture》 2025年第10期3819-3837,共19页
Ridge-furrow film mulching has been widely used as a water-saving and yield-increasing planting pattern in arid and semiarid regions.Planting density is also a vitally important factor influencing crop yield,and the o... Ridge-furrow film mulching has been widely used as a water-saving and yield-increasing planting pattern in arid and semiarid regions.Planting density is also a vitally important factor influencing crop yield,and the optimal planting density will vary in different environments(such as ridge-furrow film mulching).How the combination of film mulching and planting density will affect the growth,physiology,yield,and water and radiation use efficiencies of winter oilseed rape is not clear yet.Therefore,a three-year field experiment was conducted from 2017 to 2020 to explore the responses of leaf chlorophyll(Chl)content,net photosynthetic rate(P_(n)),leaf area index(LAI),aboveground dry matter(ADM),root growth and distribution,yield,evapotranspiration(ET),water use efficiency(WUE),and radiation use efficiency(RUE)of winter oilseed rape to different film mulching patterns(F,ridge-furrow planting with plastic film mulching over the ridges;N,flat planting without mulching)and planting densities(LD,100,000 plants ha^(-1);MD,150,000 plants ha^(-1);HD,200,000 plants ha^(-1)).The results showed that the F treatments led to significantly greater leaf Chl contents,P_(n),LAI,and ADM,and a stronger root system than treatments without film mulching throughout the whole winter rapeseed growing seasons.Winter oilseed rape in the MD treatments had better physiological(leaf Chl contents and P_(n))and growth(LAI,ADM,taproot,and lateral root)conditions than in LD and HD at the late growth period after stem-elongation.Grain yield in FMD was the greatest,and it was significantly greater by 34.8-46.0%,6.7-9.6%,87.8-108.3%,38.7-50.3%,and 50.2-61.8%compared to those of FLD,FHD,NLD,NMD,and NHD,respectively.Furthermore,the ET in FMD was equivalent to FLD and FHD,but was markedly lower by 12.2-18.4%,14.5-20.3%,and 14.6-20.4%than in NLD,NMD,and NHD.Finally,the WUE and RUE in FMD were significantly improved by 88.5-94.0%and 29.0-41.8%compared to NHD(the local conventional planting pattern and planting density for winter rapeseed).In summary,FMD is a favorable cultivation management strategy to save water,increase yield and improve resource utilization efficiencies in winter oilseed rape in Northwest China. 展开更多
关键词 ridge-furrow film mulching crop growth and physiology YIELD EVAPOTRANSPIRATION water use efficiency radiation use efficiency
在线阅读 下载PDF
Reconfigurable Compact Wideband Circularly Polarised Dielectric Resonator Antenna for Wireless Applications 被引量:2
11
作者 Shahid Khan Xin Cheng Ren +4 位作者 Haider Ali Camel Tanougast Abdul Rauf Safdar Nawaz Khan Marwat Muhammad Rizwan Anjum 《Computers, Materials & Continua》 SCIE EI 2021年第8期2095-2109,共15页
In this work,a novel compact wideband reconfigurable circularly polarised(CP)dielectric resonator antenna(DRA)is presented.The L-shaped Dielectric resonator antenna is excited by an inverted question mark shaped feed.... In this work,a novel compact wideband reconfigurable circularly polarised(CP)dielectric resonator antenna(DRA)is presented.The L-shaped Dielectric resonator antenna is excited by an inverted question mark shaped feed.This arrangement of feed-line helps to generate two orthogonal modes inside the DR,which makes the design circularly polarised.A thin micro-strip line placed on the defected ground plane not only helps to generate a wideband response but also assist in the positioning of the two diode switches.These switches located at the left and right of the micro-strip line helps in performing two switching operations.The novel compact design offers the reconfigurability between 2.9–3.8 GHz which can be used for different important wireless applications.For the switching operation I,the achieved impedance bandwidth is 24%while axial ratio bandwidth(ARBW)is 42%.For this switching state,the design has 100%CP performance.Similarly,the switching operation II achieves 60%impedance bandwidth and 58.88%ARBW with 76.36%CP performance.The proposed design has a maximum measured gain of 3.4 dBi and 93%radiation efficiency.The proposed design is novel in terms of compactness and performance parameters.The prototype is fabricated for the performance analysis which shows that the simulated and measured results are in close agreement. 展开更多
关键词 Circularly polarized DRA ARBW BANDWIDTH GAIN radiation efficiency
在线阅读 下载PDF
Constraints on rupture speed of the 2001 MS 8.1 West Kunlun Mountain Pass earthquake by co-seismic surface rupture slip displacements based on the slip-weakening mechanism with frictional undershoot involved
12
作者 史保平 杨勇 《Acta Seismologica Sinica(English Edition)》 CSCD 2008年第3期219-232,共14页
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a ... With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propagation along the main fault could exceed the local shear-wave speed, perhaps reach the P-wave speed on a certain section of fault, our results show that, under a slip-weakening assumption combined with a frictional undershoot (partial stress drop model), average rupture speed should be equal to or less than the Rayleigh wave speed with a high seismic radiation efficiency, which is consistent with the result derived by waveform inversion and the result estimated from source stress field. Associated with the surface rupture mechanism, such as partial stress drop (frictional undershoot) associated with the apparent stress, an alternative rupture mechanism based on the slip-weakening model has also been discussed. 展开更多
关键词 slip-weakening model partial stress drop frictional undershoot apparent stress rupture speed radiation efficiency
在线阅读 下载PDF
A way of estimating the characteristic slip displacement
13
作者 Jeen-Hwa Wang 《Earthquake Science》 CSCD 2016年第1期35-43,共9页
During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, A... During the ruptures of an earthquake, the strain energy, AE, will be transferred into, at least, three parts, i.e., the seismic radiation energy (Es), fracture energy (Eg), and frictional energy (Ef), that is, AE = Es + Eg + El. Friction, which is represented by a velocity- and state-de- pendent friction law by some researchers, controls the three parts. One of the main parameters of the law is the char- acteristic slip displacement, De. It is significant and nec- essary to evaluate the reliable value of Dc from observed and inverted seismic data. Since Dc controls the radiation efficiency, ηR = Es/(Es + Eg), the value of qR is a good constraint of estimating Dc. Integrating observed data and inverted results of source parameters from recorded seis- mograms, the values of Es and Eg of an earthquake can be measured, thus leading to the value of ηR. The constraint used to estimate the reliable value of Dc will be described in this work. An example of estimates of Dc based on the observed and inverted values of source parameters of the September 20, 1999 Ms 7.6 Chi-Chi (Ji-Ji), Taiwan region, earthquake will be presented. 展开更多
关键词 Characteristic slip displacement Seismicradiation energy Fracture energy radiation efficiency
在线阅读 下载PDF
Efficient Terahertz Photoconductive Emitters with Improved Electrode Structures
14
作者 Ying-Xin Wang Yi-Jie Niu +2 位作者 Wei Cheng Zhi-Qiang Li Zi-Ran Zhao 《Journal of Electronic Science and Technology》 CAS 2014年第2期156-160,共5页
We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structu... We present the design, fabrication, and characterization of two new types of terahertz photoconductive emitters. One has an asymmetric four-contact electrode structure and the other has an arc-shaped electrode structure, which are all modified from a traditional strip line antenna. Numerical simulations and real experiments confirm the good performance of the proposed antennas. An amplitude increase of about 40% is experimentally observed for the terahertz signals generated from the new structures. The special electrode structure and its induced local bias field enhancement are responsible for this radiation efficiency improvement. Our work demonstrates the feasibility of developing highly efficient terahertz photoconductive emitters by optimizing the electrode structure. 展开更多
关键词 Electrode structure photoconductive antenna radiation efficiency TERAHERTZ
在线阅读 下载PDF
Recognizing production options for pearl millet in Pakistan under changing climate scenarios 被引量:1
15
作者 Asmat Ullah Ashfaq Ahmad +1 位作者 Tasneem Khaliq Javaid Akhtar 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期762-773,共12页
Climate change is making the lands a harsher environment all over the world including Pakistan. It is expected to oppose us with three main challenges: increase in temperature up to 2-5℃ (heat stress), increasing ... Climate change is making the lands a harsher environment all over the world including Pakistan. It is expected to oppose us with three main challenges: increase in temperature up to 2-5℃ (heat stress), increasing water stress and severe malnourishment due to climate change. It has been foreseen that there will be a 10% increase of dryland areas with climate change in the world, with more variability and incidences of short periods of extreme events (drought and heat stress). Pearl millet is a hardy, climate smart grain crop, idyllic for environments prone to drought and heat stresses. The crop continues to produce highly nutritious grain sustainably, thereby encouraging the fight against poverty and food insecurity due to its resilience. The crop is more responsive to good production options (planting time, planting density, inter/intra row spacing, nitrogen application and irrigation). It has high crop growth rate, large leaf area index and high radiation use efficiency that confers its high potential yield. In most of the cases, pearl millet is remained our agricultural answer to the climate calamity that we are facing, because it is selected as water saving, drought tolerant and climate change complaint crop. In view of circumstances, pearl millet cultivation must be retrieved by recognizing production options in context to changing climate scenarios of Pakistan using crop modeling techniques. 展开更多
关键词 pearl millet production options climate change nitrogen use efficiency radiation use efficiency
在线阅读 下载PDF
Maximizing the Radiation Use Efficiency by Matching the Leaf Area and Leaf Nitrogen Vertical Distributions in a Maize Canopy:A Simulation Study
16
作者 Baiyan Wang Shenghao Gu +4 位作者 Junhao Wang Bo Chen Weiliang Wen Xinyu Guo Chunjiang Zhao 《Plant Phenomics》 CSCD 2024年第4期904-918,共15页
The radiation use efficiency(RUE)is one of the most important functional traits determining crop productivity.The coordination of the vertical distribution of light and leaf nitrogen has been proven to be effective in... The radiation use efficiency(RUE)is one of the most important functional traits determining crop productivity.The coordination of the vertical distribution of light and leaf nitrogen has been proven to be effective in boosting the RUE from both experimental and computational evidence.However,previous simulation studies have primarily assumed that the leaf area is uniformly distributed along the canopy depth,rarely considering the optimization of the leaf area distribution,especially for C4 crops.The present study hypothesizes that the RUE may be maximized by matching the leaf area and leaf nitrogen vertical distributions in the canopy.To test this hypothesis,various virtual maize canopies were generated by combining the leaf inclination angle,vertical leaf area distribution,and vertical leaf nitrogen distribution and were further evaluated by an improved multilayer canopy photosynthesis model.We found that a greater fraction of leaf nitrogen is preferentially allocated to canopy layers with greater leaf areas to maximize the RUE.The coordination of light and nitrogen emerged as a property from the simulations to maximize the RUE in most scenarios,particularly in dense canopies.This study not only facilitates explicit and precise profiling of ideotypes for maximizing the RUE but also represents a primary step toward high-throughput phenotyping and screening of the RUE for massive numbers of inbred lines and cultivars. 展开更多
关键词 simulation studies Leaf Area Distribution radiation Use efficiency radiation use efficiency rue coordination vertical distribution light Maize Canopy Simulation Study leaf nitrogen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部