期刊文献+
共找到6,467篇文章
< 1 2 250 >
每页显示 20 50 100
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
1
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer
2
作者 Mohammad Soleimani Amiri Sahbi Boubaker +1 位作者 Rizauddin Ramli Souad Kamel 《Computer Modeling in Engineering & Sciences》 2025年第9期3113-3133,共21页
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe... Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons. 展开更多
关键词 Adaptive neural network controller disturbance observer upper-limb exoskeleton rehabilitation robotics Lyapunov stability radial basis function network
在线阅读 下载PDF
A Basis Function Generation Based Digital Predistortion Concurrent Neural Network Model for RF Power Amplifiers
3
作者 SHAO Jianfeng HONG Xi +2 位作者 WANG Wenjie LIN Zeyu LI Yunhua 《ZTE Communications》 2025年第1期71-77,共7页
This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a f... This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a feedforward neural network(FNN)and a convolutional neural network(CNN).The proposed model takes the basic elements that form the bases as input,defined by the generalized memory polynomial(GMP)and dynamic deviation reduction(DDR)models.The FNN generates the basis function and its output represents the basis values,while the CNN generates weights for the corresponding bases.Through the concurrent training of FNN and CNN,the hidden layer coefficients are updated,and the complex multiplication of their outputs yields the trained in-phase/quadrature(I/Q)signals.The proposed model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing(OFDM)communication system.The results show that the model achieves an adjacent channel power ratio(ACPR)of less than-48 d B within a 100 MHz integral bandwidth for both the training and test datasets. 展开更多
关键词 basis function generation digital predistortion generalized memory polynomial dynamic deviation reduction neural network
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
4
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Neural network solution based on the minimum potential energy principle for static problems of structural mechanics
5
作者 Jiamin QIAN Lincong CHEN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1125-1142,共18页
This paper presents the variational physics-informed neural network(VPINN)as an effective tool for static structural analyses.One key innovation includes the construction of the neural network solution as an admissibl... This paper presents the variational physics-informed neural network(VPINN)as an effective tool for static structural analyses.One key innovation includes the construction of the neural network solution as an admissible function of the boundary-value problem(BVP),which satisfies all geometrical boundary conditions.We then prove that the admissible neural network solution also satisfies natural boundary conditions,and therefore all boundary conditions,when the stationarity condition of the variational principle is met.Numerical examples are presented to show the advantages and effectiveness of the VPINN in comparison with the physics-informed neural network(PINN).Another contribution of the work is the introduction of Gaussian approximation of the Dirac delta function,which significantly enhances the ability of neural networks to handle singularities,as demonstrated by the examples with concentrated support conditions and loadings.It is hoped that these structural examples are so convincing that engineers would adopt the VPINN method in their structural design practice. 展开更多
关键词 physics-informed neural network(PINN) variational physics-informed neural network(VPINN) structural statics admissible function Gaussian approximation
在线阅读 下载PDF
Propofol-Induced Moderate-Deep Sedation Modulates Pediatric Neural Activity:A Functional Connectivity Study
6
作者 Qiang Zheng Yiyu Zhang +2 位作者 Lin Zhang Jian Wang Jungang Liu 《iRADIOLOGY》 2025年第1期61-71,共11页
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric... Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch. 展开更多
关键词 functional connectivity network moderate-deep sedation neural activity PEDIATRIC PROPOFOL
暂未订购
Neural correlates of rumination in remitted depressive episodes:Brain network connectivity and topology analyses
7
作者 Kang-Ning Li Shi-Xiong Tang +14 位作者 You-Fu Tao Hai-Ruo He Mo-Han Ma Qian-Qian Zhang Mei Huang Wen-TaoChen Hui Liang Ao-Qian Deng Si-Rui Gao Fan-Yu Meng Yi-Lin Peng Yu-Meng Ju Wen-Wen Ou Su Shu Yan Zhang 《World Journal of Psychiatry》 2025年第6期186-197,共12页
BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential fo... BACKGROUND Rumination is a critical psychological factor contributing to the relapse of major depressive episodes(MDEs)and a core residual symptom in remitted MDEs.Investigating its neural correlations is essential for developing strategies to prevent MDE relapse.Despite its clinical importance,the brain network mechanisms underlying rumination in remitted MDE patients have yet to be fully elucidated.AIM To investigate the brain network mechanism underlying rumination in patients with remitted MDEs using functional magnetic resonance imaging(fMRI).METHODS We conducted an fMRI-based rumination-distraction task to induce rumination and distraction states in 51 patients with remitted MDEs.Functional connectivity(FC)was analyzed using the network-based statistic(NBS)approach,and eight topological metrics were calculated to compare the network topological properties between the two states.Correlation analyses were further performed to identify the relationships between individual rumination levels and the significantly altered brain network metrics.RESULTS The NBS analysis revealed that the altered FCs between the rumination and distraction states were located primarily in the frontoparietal,default mode,and cerebellar networks.No significant correlation was detected between these altered FCs and individual rumination levels.Among the eight topological metrics,the clustering coefficient,shortest path length,and local efficiency were significantly lower during rumination and positively correlated with individual rumination levels.In contrast,global efficiency was greater in the rumination state than in the distraction state and was negatively correlated with individual rumination levels.CONCLUSION Our work revealed the altered FC and topological properties during rumination in remitted MDE patients,offering valuable insights into the neural mechanisms of rumination from a brain network perspective. 展开更多
关键词 neural mechanism network topology functional connectivity RUMINATION Major depressive episode
暂未订购
Convolutional Graph Neural Network with Novel Loss Strategies for Daily Temperature and Precipitation Statistical Downscaling over South China
8
作者 Wenjie YAN Shengjun LIU +6 位作者 Yulin ZOU Xinru LIU Diyao WEN Yamin HU Dangfu YANG Jiehong XIE Liang ZHAO 《Advances in Atmospheric Sciences》 2025年第1期232-247,共16页
Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome th... Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy. 展开更多
关键词 statistical downscaling convolutional graph neural network feature processing SBMSE loss function
在线阅读 下载PDF
Graph neural network-driven prediction of high-performance CO_(2)reduction catalysts based on Cu-based high-entropy alloys
9
作者 Zihao Jiao Chengyi Zhang +2 位作者 Ya Liu Liejin Guo Ziyun Wang 《Chinese Journal of Catalysis》 2025年第4期197-207,共11页
High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface compl... High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts. 展开更多
关键词 Density functional theory Machine learning CO_(2)reduction High entropy alloys Graph neural network
在线阅读 下载PDF
New criteria on the existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks
10
作者 LI Ai-ling ZHOU Zheng ZHANG Zheng-qiu 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期523-542,共20页
In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as... In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new. 展开更多
关键词 the existence of periodic solutions exponential stability quaternion-valued cellular neural networks combining graph theory with Mawhin’s continuation theorem of coincidence degree theory Lyapunov function method inequality techniques
在线阅读 下载PDF
Artificial Neural Network Modeling for Predicting Thermal Conductivity of EG/Water-Based CNC Nanofluid for Engine Cooling Using Different Activation Functions
11
作者 Munirul Hasan Mustafizur Rahman +5 位作者 Mohammad Saiful Islam Wong Hung Chan Yasser M.Alginahi Muhammad Nomani Kabir Suraya Abu Bakar Devarajan Ramasamy 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期537-556,共20页
A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe temperature range.In most radiators that are used to cool an engine,water serves as a cooling fluid.The performance ... A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe temperature range.In most radiators that are used to cool an engine,water serves as a cooling fluid.The performance of a radiator in terms of heat transmission is significantly influenced by the incorporation of nanoparticles into the cooling water.Concentration and uniformity of nanoparticle distribution are the two major factors for the practical use of nanofluids.The shape and size of nanoparticles also have a great impact on the performance of heat transfer.Many researchers are investigating the impact of nanoparticles on heat transfer.This study aims to develop an artificial neural network(ANN)model for predicting the thermal conductivity of an ethylene glycol(EG)/waterbased crystalline nanocellulose(CNC)nanofluid for cooling internal combustion engine.The implementation of an artificial neural network considering different activation functions in the hidden layer is made to find the bestmodel for the cooling of an engine using the nanofluid.Accuracies of the model with different activation functions in artificial neural networks are analyzed for different nanofluid concentrations and temperatures.In artificial neural networks,Levenberg–Marquardt is an optimization approach used with activation functions,including Tansig and Logsig functions in the training phase.The findings of each training,testing,and validation phase are presented to demonstrate the network that provides the highest level of accuracy.The best result was obtained with Tansig,which has a correlation of 0.99903 and an error of 3.7959×10^(–8).It has also been noticed that the Logsig function can also be a good model due to its correlation of 0.99890 and an error of 4.9218×10^(–8).Thus ourANNwith Tansig and Logsig functions demonstrates a high correlation between the actual output and the predicted output. 展开更多
关键词 Artificial neural network activation function thermal conductivity NANOCELLULOSE
在线阅读 下载PDF
Fusion of Activation Functions: An Alternative to Improving Prediction Accuracy in Artificial Neural Networks
12
作者 Justice Awosonviri Akodia Clement K. Dzidonu +1 位作者 David King Boison Philip Kisembe 《World Journal of Engineering and Technology》 2024年第4期836-850,共15页
The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal... The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area. 展开更多
关键词 Artificial neural networks Container Dwell Time Fusion of Activation functions Randomized Search CV Algorithm Prediction Accuracy
在线阅读 下载PDF
Functional Neural Networks in Human Brain Organoids
13
作者 Longjun Gu Hongwei Cai +3 位作者 Lei Chen Mingxia Gu Jason Tchieu Feng Guo 《Biomedical Engineering Frontiers》 2024年第1期89-98,共10页
Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular a... Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications. 展开更多
关键词 functional neural networks calcium imaging human brain orga human brain organoids neurological diseases human pluripotent stem cells organoid neural networks onns microelectrode array technology
原文传递
State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network 被引量:6
14
作者 毕军 邵赛 +1 位作者 关伟 王璐 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期560-564,共5页
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial... The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle. 展开更多
关键词 state of charge estimation BATTERY electric vehicle radial-basis-function neural network
原文传递
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
15
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
在线阅读 下载PDF
APPROXIMATION ANALYSES FOR FUZZY VALUED FUNCTIONS IN L_1(μ)-NORM BY REGULAR FUZZY NEURAL NETWORKS 被引量:4
16
作者 Liu Puyin (Dept. of System Eng. and Math., National Univ. of Defence Tech., Changsha 410073) 《Journal of Electronics(China)》 2000年第2期132-138,共7页
By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-... By defining fuzzy valued simple functions and giving L1(μ) approximations of fuzzy valued integrably bounded functions by such simple functions, the paper analyses by L1(μ)-norm the approximation capability of four-layer feedforward regular fuzzy neural networks to the fuzzy valued integrably bounded function F : Rn → FcO(R). That is, if the transfer functionσ: R→R is non-polynomial and integrable function on each finite interval, F may be innorm approximated by fuzzy valued functions defined as to anydegree of accuracy. Finally some real examples demonstrate the conclusions. 展开更多
关键词 FUZZY VALUED simple function REGULAR FUZZY neural network L1(μ) APPROXIMATION Universal approximator
在线阅读 下载PDF
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
17
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets NIR diffuse reflectance spectroscopy Partial least square Back-propagation neural network Radial basis function neural network
暂未订购
Neural network as a function approximator and its application in solving differential equations 被引量:3
18
作者 Zeyu LIU Yantao YANG Qingdong CAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第2期237-248,共12页
A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differe... A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differential equations(PDEs)combined with the automatic differentiation(AD) technique. In this work, we explore the use of NN for the function approximation and propose a universal solver for ODEs and PDEs. The solver is tested for initial value problems and boundary value problems of ODEs, and the results exhibit high accuracy for not only the unknown functions but also their derivatives. The same strategy can be used to construct a PDE solver based on collocation points instead of a mesh, which is tested with the Burgers equation and the heat equation(i.e., the Laplace equation). 展开更多
关键词 neural network(NN) function approximation ordinary DIFFERENTIAL equation(ODE)solver partial DIFFERENTIAL equation(PDE)solver
在线阅读 下载PDF
Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy 被引量:6
19
作者 Li-juan XIE Xing-qian YE Dong-hong LIU Yi-bin YING 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第12期982-989,共8页
Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was ap... Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice. 展开更多
关键词 Near-infrared (NIR) spectroscopy Principal component-radial basis function neural networks (PC-RBFNN) Bayberry juice ADULTERATION Chemometrics technique
在线阅读 下载PDF
Predicting uniaxial compressive strength of tuff after accelerated freeze-thaw testing: Comparative analysis of regression models and artificial neural networks
20
作者 Ogün Ozan VAROL 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3521-3535,共15页
Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern const... Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern construction as well. However, ignimbrites are particularly vulnerable to atmospheric conditions, such as freeze-thaw cycles, due to their high porosity, which is a result of their formation process. When water enters the pores of the ignimbrites, it can freeze during cold weather. As the water freezes and expands, it generates internal stress within the stone, causing micro-cracks to develop. Over time, repeated freeze-thaw (F-T) cycles lead to the growth of these micro-cracks into larger cracks, compromising the structural integrity of the ignimbrites and eventually making them unsuitable for use as building materials. The determination of the long-term F-T performance of ignimbrites can be established after long F-T experimental processes. Determining the long-term F-T performance of ignimbrites typically requires extensive experimental testing over prolonged freeze-thaw cycles. To streamline this process, developing accurate predictive equations becomes crucial. In this study, such equations were formulated using classical regression analyses and artificial neural networks (ANN) based on data obtained from these experiments, allowing for the prediction of the F-T performance of ignimbrites and other similar building stones without the need for lengthy testing. In this study, uniaxial compressive strength, ultrasonic propagation velocity, apparent porosity and mass loss of ignimbrites after long-term F-T were determined. Following the F-T cycles, the disintegration rate was evaluated using decay function approaches, while uniaxial compressive strength (UCS) values were predicted with minimal input parameters through both regression and ANN analyses. The ANN and regression models created for this purpose were first started with a single input value and then developed with two and three combinations. The predictive performance of the models was assessed by comparing them to regression models using the coefficient of determination (R2) as the evaluation criterion. As a result of the study, higher R2 values (0.87) were obtained in models built with artificial neural network. The results of the study indicate that ANN usage can produce results close to experimental outcomes in predicting the long-term F-T performance of ignimbrite samples. 展开更多
关键词 IGNIMBRITE Uniaxial compressive strength FREEZE-THAW Decay function Regression Artificial neural network
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部