期刊文献+
共找到1,412篇文章
< 1 2 71 >
每页显示 20 50 100
A data-adaptive network design for the regional gravity field modelling using spherical radial basis functions
1
作者 Fang Zhang Huanling Liu Hanjiang Wen 《Geodesy and Geodynamics》 EI CSCD 2024年第6期627-634,共8页
A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained wi... A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network. 展开更多
关键词 Regional gravity field modelling Spherical radial basis functions Poisson kernel function HDBSCAN clustering algorithm
原文传递
Comparison Between Radial Basis Function Neural Network and Regression Model for Estimation of Rice Biophysical Parameters Using Remote Sensing 被引量:11
2
作者 YANG Xiao-Hua WANG Fu-Min +4 位作者 HUANG Jing-Feng WANG Jian-Wen WANG Ren-Chao SHEN Zhang-Quan WANG Xiu-Zhen 《Pedosphere》 SCIE CAS CSCD 2009年第2期176-188,共13页
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra... The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters. 展开更多
关键词 biophysical parameters radial basis function regression model remote sensing RICE
在线阅读 下载PDF
Investigation of the Tikhonov Regularization Method in Regional Gravity Field Modeling by Poisson Wavelets Radial Basis Functions 被引量:2
3
作者 Yihao Wu Bo Zhong Zhicai Luo 《Journal of Earth Science》 SCIE CAS CSCD 2018年第6期1349-1358,共10页
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri... The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling. 展开更多
关键词 regional gravity field modeling Poisson wavelets radial basis functions Tikhonov regularization method L-CURVE variance component estimation(VCE)
原文传递
A Gravity Forward Modeling Method based on Multiquadric Radial Basis Function 被引量:1
4
作者 LIU Yan LV Qingtian +4 位作者 HUANG Yao SHI Danian MENG Guixiang YAN Jiayong ZHANG Yongqian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期62-64,共3页
It is one of the most important part to build an accurate gravity model in geophysical exploration.Traditional gravity modelling is usually based on grid method,such as difference method and finite element method wide... It is one of the most important part to build an accurate gravity model in geophysical exploration.Traditional gravity modelling is usually based on grid method,such as difference method and finite element method widely used.Due to self-adaptability lack of division meshes and the difficulty of high-dimensional calculation. 展开更多
关键词 geophysical exploration gravity forward modeling mesh-free method radial basis function
在线阅读 下载PDF
High-precision chaotic radial basis function neural network model:Data forecasting for the Earth electromagnetic signal before a strong earthquake
5
作者 Guocheng Hao Juan Guo +2 位作者 Wei Zhang Yunliang Chen David AYuen 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期364-373,共10页
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters... The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake. 展开更多
关键词 Earth’s natural pulse electromagnetic field Chaos theory radial basis function neural network Forecasting model
在线阅读 下载PDF
基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法
6
作者 夏向阳 岳家辉 +4 位作者 曾小勇 刘代飞 陈来恩 吕崇耿 夏永凯 《中国电机工程学报》 北大核心 2025年第2期638-649,I0020,共13页
锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离... 锂离子电池剩余容量估计是电池管理系统中关键技术之一,也是实现锂离子电池安全稳定运行的前提。针对锂离子电池剩余容量有效估计问题,该文提出带外生输入的自回归模型(radial basis function-autoregressive exogenous,RBF-ARX)的锂离子电池剩余容量估计方法,利用结构化非线性参数优化方法辨识模型参数,并将“老化信息”与“能量”相结合,基于小波包能量分析从电池充电电流/电压曲线中直接提取能量特征作为新健康特征,采用传递熵对新健康特征进行筛选以构成模型输入,实现锂离子电池剩余容量的有效估计;最后,基于NASA公开的锂离子电池老化数据,通过不同训练/测试样本比例、不同模型展开综合分析。结果表明,所提出的基于状态相依的RBF-ARX模型的锂离子电池剩余容量估计方法与常用的数据驱动方法相比,误差指标中平均绝对误差、平均绝对百分比误差、均方根误差均保持在较低水平,具有良好的估计精度。 展开更多
关键词 锂离子电池 健康特征 传递熵 带外生输入的自回归模型 健康状态
原文传递
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
7
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(WOA) 模拟退火算法(SA) 径向基神经网络模型(rbf) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于改进RBF神经网络的台风风速预测研究
8
作者 李红丽 陶洪峰 《自动化仪表》 2025年第12期11-14,19,共5页
针对台风风速预测受复杂因素影响,呈现出高度非线性特征的问题,传统的单一预测模型预测精度较差。对仿射传播(AP)聚类和径向基函数(RBF)神经网络算法进行了研究,构建了一种改进的混合模型。借助AP聚类算法的自适应聚类特性,为RBF神经网... 针对台风风速预测受复杂因素影响,呈现出高度非线性特征的问题,传统的单一预测模型预测精度较差。对仿射传播(AP)聚类和径向基函数(RBF)神经网络算法进行了研究,构建了一种改进的混合模型。借助AP聚类算法的自适应聚类特性,为RBF神经网络提供了精确、稳定的初始化中心向量,显著增强了RBF神经网络的非线性拟合能力和预测精度。经试验对比证明,改进后的混合模型明显优于其他模型,不仅达到了预设的误差指标,还实现了更低的误差水平,避免了传统方法在复杂非线性问题中的局限性。该研究不仅为台风风速预测提供了新的技术,还可为其他涉及非线性预测的领域(如气象、水文、能源等)提供参考。该研究对相关学科的研究方法改进具有重要启示意义。 展开更多
关键词 仿射传播聚类 径向基函数神经网络 风速预测 台风 聚类中心 欧氏距离
在线阅读 下载PDF
基于动态RBF代理模型和进化算法的起重机主梁优化 被引量:2
9
作者 段雄 范小宁 《机械设计》 北大核心 2025年第3期86-94,共9页
针对基于有限元仿真模型的起重机结构优化计算成本在工程上难以接受的问题,文中结合差分进化算法和径向基代理模型提出一种基于动态径向基代理模型的全局优化策略。该策略在优化过程中通过局部开发最优解和全局探索误差最大区域的加点... 针对基于有限元仿真模型的起重机结构优化计算成本在工程上难以接受的问题,文中结合差分进化算法和径向基代理模型提出一种基于动态径向基代理模型的全局优化策略。该策略在优化过程中通过局部开发最优解和全局探索误差最大区域的加点策略构造动态径向基代理模型,并以约束函数模型的预测误差和目标函数下降程度构建优化终止条件,保证优化的全局收敛性和最优解处的模型精确性。通过数值算例和工字梁优化算例进行验证,该方法不仅能够获得全局最优解,而且明显减少了对原函数的调用次数,显著提高了优化效率。最后,结合桥式起重机桥架的有限元分析,将此方法用于解决起重机主梁优化问题。结果显示:在满足约束的条件下,主梁横截面面积减小了约22.36%,并且降低了大量的计算成本,提高了优化效率,解决了智能群算法与起重机结构有限元模型直接结合进行优化的昂贵计算成本问题。 展开更多
关键词 起重机主梁 动态径向基代理模型 差分进化算法 加点策略
原文传递
基于RBF神经网络的4-PPPS并联机构位姿误差补偿 被引量:1
10
作者 金奕扬 李磊 +3 位作者 许家伟 汪建华 王国伟 许润康 《现代制造工程》 北大核心 2025年第4期140-150,共11页
为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误... 为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误差分析结果表明,沿轨道方向移动副长度误差对4-PPPS并联机构运动精度影响最大,在4条支链均存在误差的情况下,Z轴方向动平台位姿误差达到1.5 mm。同时,为克服传统误差参数辨识难度较大的问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化径向基函数(Radial Basis Function,RBF)神经网络的补偿方法。该方法将位姿误差转化为驱动关节长度误差,通过神经网络建立动平台理论位姿与驱动关节长度误差的预测模型,并采用鲸鱼优化算法优化网络参数,最终获得驱动关节长度补偿量,用来修正动平台的实际位姿并完成误差补偿。经过仿真验证,该方法能够有效提升4-PPPS并联机构的运动精度,动平台在X、Y、Z轴方向的误差均值分别由0.169、0.188、0.159 mm降至0.002、0.001、0.003 mm,误差最大值分别由0.208、0.231、0.195 mm降至0.012、0.001、0.019 mm,平均位姿精度提高了85.07%,补偿效果显著。 展开更多
关键词 并联机构 误差分析 误差补偿 rbf神经网络 鲸鱼优化算法
在线阅读 下载PDF
Health diagnosis of concrete dams using hybrid FWA with RBF-based surrogate model 被引量:5
11
作者 Si-qi Dou Jun-jie Li Fei Kang 《Water Science and Engineering》 EI CAS CSCD 2019年第3期188-195,共8页
Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to... Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam. 展开更多
关键词 FIREWORKS algorithm(FWA) radial basis function (rbf) network surrogate model INVERSE analysis Structural HEALTH monitoring
在线阅读 下载PDF
Sequential RBF Surrogate-based Efficient Optimization Method for Engineering Design Problems with Expensive Black-Box Functions 被引量:6
12
作者 PENG Lei LIU Li +1 位作者 LONG Teng GUO Xiaosong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1099-1111,共13页
As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully ... As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems. 展开更多
关键词 surrogate-based optimization global optimization significant sampling space adaptive surrogate radial basis function
在线阅读 下载PDF
基于POD-RBF降阶模型的超高温气冷堆DLOFC事故温度时空分布计算方法
13
作者 丁永旺 张汉 +5 位作者 彭杵真 邬颖杰 郭炯 彭威 张平 李富 《核动力工程》 北大核心 2025年第2期107-118,共12页
超高温气冷堆(VHTR)具有核能制氢等广泛的应用领域,失冷失压(DLOFC)事故是VHTR后果最严重的设计基准事故之一,而利用全阶模型(FOM)进行大量不同参数下的DLOFC事故特性分析需要消耗大量的计算资源。对设计参数范围内的不同方案进行基于... 超高温气冷堆(VHTR)具有核能制氢等广泛的应用领域,失冷失压(DLOFC)事故是VHTR后果最严重的设计基准事故之一,而利用全阶模型(FOM)进行大量不同参数下的DLOFC事故特性分析需要消耗大量的计算资源。对设计参数范围内的不同方案进行基于降阶模型(ROM)的DLOFC事故的快速、准确计算具有重要需求和意义。本文利用TINTE程序建立了VHTR的FOM,基于本征正交分解-径向基函数插值(POD-RBF)方法实现了一个快速计算VHTR-DLOFC事故的ROM,并给出了两种方法来实现ROM的瞬态过程计算,方法1将时间等同于入口温度等输入参数;方法2对于同一参数下的不同时间步的系数整体进行计算。结果表明,两种ROM方法的计算结果最大相对误差均低于1%,且ROM计算效率远高于FOM;同时方法2的计算效率是方法1的40倍。因此,ROM可以为VHTR设计参数的优化工作提供快速计算程序。 展开更多
关键词 超高温气冷堆(VHTR) 本征正交分解(POD) 径向基函数(rbf)插值 降阶模型(ROM)
原文传递
Synchronization of chaos using radial basis functions neural networks 被引量:2
14
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization radial basis function neural networks model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network 被引量:2
15
作者 YANG Xiao-hua HUANG Jing-feng +2 位作者 WANG Jian-wen WANG Xiu-zhen LIU Zhan-yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期883-895,共13页
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ... Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs. 展开更多
关键词 Artificial neural network (ANN) radial basis function rbf Remote sensing RICE Vegetation index (VI)
在线阅读 下载PDF
基于RBF神经网络的分数阶虚拟同步机控制策略
16
作者 张赟宁 郭钟仁 张磊 《电力系统及其自动化学报》 北大核心 2025年第9期101-108,共8页
虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题... 虚拟同步机控制策略在逆变器并网运行中提供了惯量与阻尼,增加了系统的频率和电压的支撑能力。然而,引入的虚拟惯性可能导致逆变器并网有功在扰动情况下出现动态振荡和功率超调,并且虚拟惯性与阻尼会使系统的响应速度变慢。针对这一问题,本文首先建立分数阶虚拟同步机数学模型,引入可调参数增加系统的自由度。然后,设计径向基函数神经网络对虚拟同步机的转动惯量和阻尼系数进行在线自适应调节,将调节后的转动惯量、阻尼系数和可调参数应用于分数阶虚拟同步机控制器。最后,通过Matlab/Simulink仿真比较传统策略与所提控制策略的动态响应。仿真结果表明,所提控制策略能够显著抑制系统在发生扰动时输出有功功率和输出频率的振荡和超调,且具有良好的动态响应,验证了所提控制策略的有效性。 展开更多
关键词 虚拟同步发电机 分数阶微积分 径向基函数神经网络 自适应调节
在线阅读 下载PDF
Electrode Wear Prediction in Milling Electrical Discharge Machining Based on Radial Basis Function Neural Network 被引量:2
17
作者 黄河 白基成 +1 位作者 卢泽生 郭永丰 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第6期736-741,共6页
Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating f... Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%. 展开更多
关键词 milling electrical discharge machining (EDM) electrode wear prediction radial basis function rbf neural network
原文传递
基于RBF神经网络的光滑不确定模型自适应采样方法
18
作者 郑源 李艳 +2 位作者 高峰 张旭涛 杨勃 《计算机集成制造系统》 北大核心 2025年第8期2920-2929,共10页
由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将... 由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将其不确定度估计代入提出的考虑轮廓曲率影响的MaxCWVar信息标准中用于选择下一最优测点(NBP)。以叶片截面自由曲线为例,验证了该方法自适应采样性能的优越性。与其他自适应采样策略的对比表明,基于RBFNN的响应预测对于采样点位置确定具有很好的指导作用;与其他三个常用的NBP选择标准相比,根据MaxCWVar标准得到的采样点分布更为合理,能及时准确地跟随轮廓的几何特征变化,经样本密度与曲率之间的相关性分析得以验证。特别是对采样实时性有较高要求的情况下,所提出方法具有更好的重构精度和建模效率。研究成果对于探索快速、智能的复杂无模型光滑曲面重构方法具有启发意义。 展开更多
关键词 不确定模型 自适应采样 径向基函数神经网络 MaxCWVar信息标准 下一最优测点
在线阅读 下载PDF
水下运输系统RBF神经网络终端滑模控制
19
作者 袁占航 马渝翔 李运华 《核动力工程》 北大核心 2025年第1期247-253,共7页
水下运输系统在运输载荷时会受到水的不确定非线性和其他外部扰动影响。针对水下运输系统的运行控制问题,以核电厂燃料组件的水下运输系统为对象,设计了基于径向基函数(RBF)神经网络的非奇异终端滑模控制方法。首先,根据牛顿第二定律和M... 水下运输系统在运输载荷时会受到水的不确定非线性和其他外部扰动影响。针对水下运输系统的运行控制问题,以核电厂燃料组件的水下运输系统为对象,设计了基于径向基函数(RBF)神经网络的非奇异终端滑模控制方法。首先,根据牛顿第二定律和Morison方程建立了系统的运动微分方程并推导其状态空间方程;其次,设计非奇异终端滑模控制器,并用RBF神经网络对未知非线性作用进行估计并在控制器中补偿,由Lyapunov稳定性理论推导了网络权值的自适应更新律;通过Lyapunov稳定性理论证明了所提控制策略可以实现对未知非线性估计的渐进收敛和对给定指令跟踪的有限时间收敛;分别对带载上行和空载下行两种工况进行仿真验证,仿真结果表明了所设计的控制器性能良好。 展开更多
关键词 水下运输 径向基函数(rbf)神经网络 终端滑模 Morison方程
原文传递
基于Pearson相关性与RBF神经网络的电池容量预测
20
作者 别传玉 刘虹灵 +2 位作者 王雪晴 张宇平 高标 《稀有金属》 北大核心 2025年第7期1119-1126,共8页
针对目前退役锂离子电池容量测试方法耗时长、能耗高等问题,本文提出了一种基于径向基函数(RBF)神经网络的退役电池容量预测方法。首先通过电池充放电测试获取电池剩余容量,然后由脉冲测试和短时间恒流充电测试提取与电池剩余容量相关... 针对目前退役锂离子电池容量测试方法耗时长、能耗高等问题,本文提出了一种基于径向基函数(RBF)神经网络的退役电池容量预测方法。首先通过电池充放电测试获取电池剩余容量,然后由脉冲测试和短时间恒流充电测试提取与电池剩余容量相关联的特征量,利用皮尔逊(Pearson)相关系数法筛选处理所得特征参数,获得强相关特征参数,最后引入RBF神经网络建立多特征参数与电池容量的映射关系,建立退役电池容量预测模型,并在不同型号电池上应用该模型进行了验证实验,其预测的容量最大误差为0.6443 Ah。该模型能够有效预测退役锂电池的剩余容量且预测效率高、通用性强,在工程上具有较大的实用价值。 展开更多
关键词 退役电池 皮尔逊(Pearson)相关系数法 径向基函数(rbf)神经网络 容量预测
原文传递
上一页 1 2 71 下一页 到第
使用帮助 返回顶部