Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe...Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.展开更多
Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of thes...Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of these missing data is highly valuable for engineering and scientific research.In this study,the radial basis function(RBF)method is used to estimate the spatial distribution of total suspended matter(TSM)concentration in Hangzhou Bay using remote sensing data with severe data gaps.The estimation precision is validated by comparing the results with those of other commonly used interpolation methods,such as the Kriging method and the basic spline(B-spline)method.In addition,the applicability of the RBF method is explored.Results show that the estimation of the RBF method is significantly close to the observation in Hangzhou Bay.The average of the mean absolute error,mean relative error,and root mean square error in all the experiments is evidently smaller than those of the Kriging and B-spline interpolations,indicating that the proposed method is more appropriate for estimating the spatial distribution of the TSM in Hangzhou Bay.Finally,the TSM distribution in the blank observational area is predicted.This study can provide some reference values for handling watercolor remote sensing data.展开更多
In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the max...In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.展开更多
A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained wi...A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes...Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.展开更多
The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical prop...The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart.展开更多
In this paper, an improved radial basis function networks named hidden neuron modifiable radial basis function (HNMRBF) networks is proposed for target classification, and evolutionary programming (EP) is used as a le...In this paper, an improved radial basis function networks named hidden neuron modifiable radial basis function (HNMRBF) networks is proposed for target classification, and evolutionary programming (EP) is used as a learning algorithm to determine and modify the hidden neuron of HNMRBF nets. The result of passive sonar target classification shows that HNMRBF nets can effectively solve the problem of traditional neural networks, i. e. learning new target patterns on line will cause forgetting of the old patterns.展开更多
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig...Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.展开更多
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra...The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
The Radial Basis Function(RBF) method with data reduction is an effective way to perform mesh deformation. However, for large deformations on meshes of complex aerodynamic configurations, the efficiency of the RBF m...The Radial Basis Function(RBF) method with data reduction is an effective way to perform mesh deformation. However, for large deformations on meshes of complex aerodynamic configurations, the efficiency of the RBF mesh deformation method still needs to be further improved to fulfill the demand of practical application. To achieve this goal, a multistep RBF method based on a multilevel subspace RBF algorithm is presented to further improve the efficiency of the mesh deformation method in this research. A whole deformation is divided into a series of steps, and the supporting radius is adjusted in accordance with the maximal displacement error. Furthermore, parallel computing is applied to the interpolation to enhance the efficiency. Typical deformation problems of the NASA Common Research Model(CRM) configuration, the DLR-F6 wing-body-nacellepylon configuration, and the DLR-F11 high-lift configuration are tested to verify the feasibility of this method. Test results show that the presented multistep RBF mesh deformation method is efficient and robust in dealing with large deformation problems over complex geometries.展开更多
The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and ...The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.展开更多
An efficient MPI/OpenMP hybrid parallel Radial Basis Function (RBF) strategy for both continuous and discontinuous large-scale mesh deformation is proposed to reduce the computational cost and memory consumption.Unlik...An efficient MPI/OpenMP hybrid parallel Radial Basis Function (RBF) strategy for both continuous and discontinuous large-scale mesh deformation is proposed to reduce the computational cost and memory consumption.Unlike the conventional parallel methods in which all processors use the same surface displacement and implement the same operation,the present method employs different surface points sets and influence radius for each volume point movement,accompanied with efficient geometry searching strategy.The deformed surface points,also called Control Points (CPs),are stored in each processor.The displacement of spatial points is interpolated by using only 20-50 nearest control points,and the local influence radius is set to 5-20 times the maximum displacement of control points.To shorten the searching time for the nearest control point clouds,an Alternating Digital Tree (ADT) algorithm for 3D complex geometry is designed based on an iterative bisection technique.Besides,an MPI/OpenMP hybrid parallel approach is developed to reduce the memory cost in each High-Performance Computing (HPC) node for large-scale applications.Three 3D cases,including the ONERA-M6 wing and a commercial transport airplane standard model with up to 2.5 billion hybrid elements,are used to test the present mesh deformation method.The robustness and high parallel efficiency are demonstrated by a wing deflection case with a maximum bending angle of 450 and more than 80% parallel efficiency with 1024 MPI processors.In addition,the availability for both continuous and discontinuous surface deformation is verified by interpolating the projecting displacement with opposite directions surface points to the spatial points.展开更多
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r...Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems.展开更多
Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could re...Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could result in significant error in solving partial differential equations with Neumann boundary conditions.To overcome this drawback,the Consistent Compactly Supported Radial Basis Functions(CCSRBFs)are developed,which satisfy the predetermined consistency con- ditions.Meshless method based on point collocation with CCSRBFs is developed for solving partial differential equations.Numerical studies show that the proposed method improves the accuracy of approximation significantly.展开更多
For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon'...For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics.展开更多
A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect inte...A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or vertically in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have significant effects on the band structures in the macroscopic and microscopic scale.展开更多
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause...The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.展开更多
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ...Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.展开更多
基金funded by the King Salman Center For Disability Research,through Research Group No.KSRG-2024-468。
文摘Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.
基金supported by the Open Funds for Hubei Key Laboratory of Marine Geological Resources,China University of Geosciences(No.MGR202308)the Natural Science Foundation of Shandong Province(No.ZR2020MD085)+3 种基金the National Natural Science Foundation of China(No.41821004)the Taishan Scholar Program(No.tstp2022114)the Shandong Provincial Natural Science Foundation(No.DKXZZ202206)the National Key Research and Development Program of China(No.2016YFC1402404).
文摘Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of these missing data is highly valuable for engineering and scientific research.In this study,the radial basis function(RBF)method is used to estimate the spatial distribution of total suspended matter(TSM)concentration in Hangzhou Bay using remote sensing data with severe data gaps.The estimation precision is validated by comparing the results with those of other commonly used interpolation methods,such as the Kriging method and the basic spline(B-spline)method.In addition,the applicability of the RBF method is explored.Results show that the estimation of the RBF method is significantly close to the observation in Hangzhou Bay.The average of the mean absolute error,mean relative error,and root mean square error in all the experiments is evidently smaller than those of the Kriging and B-spline interpolations,indicating that the proposed method is more appropriate for estimating the spatial distribution of the TSM in Hangzhou Bay.Finally,the TSM distribution in the blank observational area is predicted.This study can provide some reference values for handling watercolor remote sensing data.
基金Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study
文摘In this study,an improved integrated radial basis function with nonuniform shape parameter is introduced.The proposed shape parameter varies in each support domain and is defined byθ=1/d_(max),where d_(max)is the maximum distance of any pair of nodes in the support domain.The proposed method is verified and shows good performance.The results are stable and accurate with any number of nodes and an arbitrary nodal distribution.Notably,the support domain should be large enough to obtain accurate results.This method is then applied for transient analysis of curved shell structures made from functionally graded materials with complex geometries.Through several numerical examples,the accuracy of the proposed approach is demonstrated and discussed.Additionally,the influence of various factors on the dynamic behavior of the structures,including the power-law index,different materials,loading conditions,and geometrical parameters of the structures,was investigated.
基金funded by The Fundamental Research Funds for Chinese Academy of surveying and mapping(AR2402)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(No.WHYWZ202213)。
文摘A high-precision regional gravity field model is significant in various geodesy applications.In the field of modelling regional gravity fields,the spherical radial basis functions(SRBFs)approach has recently gained widespread attention,while the modelling precision is primarily influenced by the base function network.In this study,we propose a method for constructing a data-adaptive network of SRBFs using a modified Hierarchical Density-Based Spatial Clustering of Applications with Noise(HDBSCAN)algorithm,and the performance of the algorithm is verified by the observed gravity data in the Auvergne area.Furthermore,the turning point method is used to optimize the bandwidth of the basis function spectrum,which satisfies the demand for both high-precision gravity field and quasi-geoid modelling simultaneously.Numerical experimental results indicate that our algorithm has an accuracy of about 1.58 mGal in constructing the gravity field model and about 0.03 m in the regional quasi-geoid model.Compared to the existing methods,the number of SRBFs used for modelling has been reduced by 15.8%,and the time cost to determine the centre positions of SRBFs has been saved by 12.5%.Hence,the modified HDBSCAN algorithm presented here is a suitable design method for constructing the SRBF data adaptive network.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management.
基金supported by the National Science and Technology Major Projects(No.2011ZX05020-008)Well Logging Advanced Technique and Application Basis Research Project of Petrochina Company(No.2011A-3901)
文摘The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart.
文摘In this paper, an improved radial basis function networks named hidden neuron modifiable radial basis function (HNMRBF) networks is proposed for target classification, and evolutionary programming (EP) is used as a learning algorithm to determine and modify the hidden neuron of HNMRBF nets. The result of passive sonar target classification shows that HNMRBF nets can effectively solve the problem of traditional neural networks, i. e. learning new target patterns on line will cause forgetting of the old patterns.
文摘Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine.
基金Project supported by the National Natural Science Foundation of China (No.40571115)the National High Tech-nology Research and Development Program (863 Program) of China (Nos.2006AA120101 and 2007AA10Z205)
文摘The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金co-supported by the ‘‘111" Project of China (No. B17037)the National Natural Science Foundation of China (No. 11772265)
文摘The Radial Basis Function(RBF) method with data reduction is an effective way to perform mesh deformation. However, for large deformations on meshes of complex aerodynamic configurations, the efficiency of the RBF mesh deformation method still needs to be further improved to fulfill the demand of practical application. To achieve this goal, a multistep RBF method based on a multilevel subspace RBF algorithm is presented to further improve the efficiency of the mesh deformation method in this research. A whole deformation is divided into a series of steps, and the supporting radius is adjusted in accordance with the maximal displacement error. Furthermore, parallel computing is applied to the interpolation to enhance the efficiency. Typical deformation problems of the NASA Common Research Model(CRM) configuration, the DLR-F6 wing-body-nacellepylon configuration, and the DLR-F11 high-lift configuration are tested to verify the feasibility of this method. Test results show that the presented multistep RBF mesh deformation method is efficient and robust in dealing with large deformation problems over complex geometries.
文摘The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.
基金supported by the National Key Research and Development Program of China (No.2016YFB0200701)the National Natural Science Foundation of China (Nos. 11532016 and 91530325)
文摘An efficient MPI/OpenMP hybrid parallel Radial Basis Function (RBF) strategy for both continuous and discontinuous large-scale mesh deformation is proposed to reduce the computational cost and memory consumption.Unlike the conventional parallel methods in which all processors use the same surface displacement and implement the same operation,the present method employs different surface points sets and influence radius for each volume point movement,accompanied with efficient geometry searching strategy.The deformed surface points,also called Control Points (CPs),are stored in each processor.The displacement of spatial points is interpolated by using only 20-50 nearest control points,and the local influence radius is set to 5-20 times the maximum displacement of control points.To shorten the searching time for the nearest control point clouds,an Alternating Digital Tree (ADT) algorithm for 3D complex geometry is designed based on an iterative bisection technique.Besides,an MPI/OpenMP hybrid parallel approach is developed to reduce the memory cost in each High-Performance Computing (HPC) node for large-scale applications.Three 3D cases,including the ONERA-M6 wing and a commercial transport airplane standard model with up to 2.5 billion hybrid elements,are used to test the present mesh deformation method.The robustness and high parallel efficiency are demonstrated by a wing deflection case with a maximum bending angle of 450 and more than 80% parallel efficiency with 1024 MPI processors.In addition,the availability for both continuous and discontinuous surface deformation is verified by interpolating the projecting displacement with opposite directions surface points to the spatial points.
基金Supported by the Science Technology Development Project of Jilin Province,China(No.20020503-2).
文摘Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems.
基金The project supported by the National Natural Science Foundation of China (10172052)
文摘Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could result in significant error in solving partial differential equations with Neumann boundary conditions.To overcome this drawback,the Consistent Compactly Supported Radial Basis Functions(CCSRBFs)are developed,which satisfy the predetermined consistency con- ditions.Meshless method based on point collocation with CCSRBFs is developed for solving partial differential equations.Numerical studies show that the proposed method improves the accuracy of approximation significantly.
文摘For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics.
基金supports by the National Natural Science Foundation of China (Grants 11002026, 11372039)the Beijing Natural Science Foundation (Grant 3133039)the Scientific Research Foundation for the Returned (Grant 20121832001)
文摘A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or vertically in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have significant effects on the band structures in the macroscopic and microscopic scale.
基金Supported by National Natural Science Foundation of China (Grant No.11972129)National Science and Technology Major Project of China (Grant No.2017-IV-0008-0045)+1 种基金Heilongjiang Provincial Natural Science Foundation (Grant No.YQ2022A008)the Fundamental Research Funds for the Central Universities。
文摘The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.
基金Project (Nos. 40571115 and 40271078) supported by the National Natural Science Foundation of China
文摘Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.