Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of thes...Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of these missing data is highly valuable for engineering and scientific research.In this study,the radial basis function(RBF)method is used to estimate the spatial distribution of total suspended matter(TSM)concentration in Hangzhou Bay using remote sensing data with severe data gaps.The estimation precision is validated by comparing the results with those of other commonly used interpolation methods,such as the Kriging method and the basic spline(B-spline)method.In addition,the applicability of the RBF method is explored.Results show that the estimation of the RBF method is significantly close to the observation in Hangzhou Bay.The average of the mean absolute error,mean relative error,and root mean square error in all the experiments is evidently smaller than those of the Kriging and B-spline interpolations,indicating that the proposed method is more appropriate for estimating the spatial distribution of the TSM in Hangzhou Bay.Finally,the TSM distribution in the blank observational area is predicted.This study can provide some reference values for handling watercolor remote sensing data.展开更多
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ...Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.展开更多
Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating f...Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%.展开更多
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr...A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.展开更多
It is important to reconstruct a continuous surface representation of the point cloud scanned from a human body. In this paper a new implicit surface method is proposed to reconstruct the human body surface from the p...It is important to reconstruct a continuous surface representation of the point cloud scanned from a human body. In this paper a new implicit surface method is proposed to reconstruct the human body surface from the points based on the combination of radial basis functions (RBFs) and adaptive partition of unity (PoU). The whole 3D domain of the scanned human body is firstly subdivided into a set of overlapping subdomalns based on the improved octrees. The smooth local surfaces are then computed in the subdomalns based on RBFs. And finally the global human body surface is reconstructed by blending the local surfaces with the adaptive PoU functions. This method is robust for the surface reconstruction of the scanned human body even with large or non-uniform point cloud which has a sharp density variation.展开更多
基金supported by the Open Funds for Hubei Key Laboratory of Marine Geological Resources,China University of Geosciences(No.MGR202308)the Natural Science Foundation of Shandong Province(No.ZR2020MD085)+3 种基金the National Natural Science Foundation of China(No.41821004)the Taishan Scholar Program(No.tstp2022114)the Shandong Provincial Natural Science Foundation(No.DKXZZ202206)the National Key Research and Development Program of China(No.2016YFC1402404).
文摘Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of these missing data is highly valuable for engineering and scientific research.In this study,the radial basis function(RBF)method is used to estimate the spatial distribution of total suspended matter(TSM)concentration in Hangzhou Bay using remote sensing data with severe data gaps.The estimation precision is validated by comparing the results with those of other commonly used interpolation methods,such as the Kriging method and the basic spline(B-spline)method.In addition,the applicability of the RBF method is explored.Results show that the estimation of the RBF method is significantly close to the observation in Hangzhou Bay.The average of the mean absolute error,mean relative error,and root mean square error in all the experiments is evidently smaller than those of the Kriging and B-spline interpolations,indicating that the proposed method is more appropriate for estimating the spatial distribution of the TSM in Hangzhou Bay.Finally,the TSM distribution in the blank observational area is predicted.This study can provide some reference values for handling watercolor remote sensing data.
基金Project (Nos. 40571115 and 40271078) supported by the National Natural Science Foundation of China
文摘Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.
基金the National High Technology Research and Development Program (863) of China(No. 2007AA04Z345)the National Natural Science Foundation of China (No. 50679041)the Foundation of Heilongjiang Science and Technology Committee(No. GA06A501)
文摘Milling electrical discharge machining(EDM) enables the machining of complex cavities using cylindrical or tubular electrodes.To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear.Due to the complexity and random nature of the process,existing methods of compensating for such wear usually involve off-line prediction.This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function(RBF) network.Data gained from an orthogonal experiment were used to provide training samples for the RBF network.The model established was used to forecast the electrode wear,making it possible to calculate the real-time tool wear in the milling EDM process and,to lay the foundations for dynamic compensation of the electrode wear on-line.This paper demonstrates that by using this model prediction errors can be controlled within 8%.
基金Project supported bY the National Natural Science Foundation of China (Grant No.50375085), and the Natural Science Foundation of Shandong Province (Grant No.Y2002F13)
文摘A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.
基金the National Natural Science Foundation of China (No. 50575139)the Shanghai Special Fund of Informatization (No. 088)
文摘It is important to reconstruct a continuous surface representation of the point cloud scanned from a human body. In this paper a new implicit surface method is proposed to reconstruct the human body surface from the points based on the combination of radial basis functions (RBFs) and adaptive partition of unity (PoU). The whole 3D domain of the scanned human body is firstly subdivided into a set of overlapping subdomalns based on the improved octrees. The smooth local surfaces are then computed in the subdomalns based on RBFs. And finally the global human body surface is reconstructed by blending the local surfaces with the adaptive PoU functions. This method is robust for the surface reconstruction of the scanned human body even with large or non-uniform point cloud which has a sharp density variation.